
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

August 2019

ProcessJ: The JVMCSP Code Generator ProcessJ: The JVMCSP Code Generator

Oswaldo Benjamin Cisneros Merino
benjcisneros@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Cisneros Merino, Oswaldo Benjamin, "ProcessJ: The JVMCSP Code Generator" (2019). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 3717.
https://digitalscholarship.unlv.edu/thesesdissertations/3717

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3717&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3717?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3717&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

PROCESSJ: THE JVMCSP CODE GENERATOR

by

Benjamin Cisneros Merino

Bachelor of Science (B.Sc.)

University of Nevada, Las Vegas

2017

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2019

www.manaraa.com

c© Benjamin Cisneros Merino, 2019

All Rights Reserved

www.manaraa.com

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

May 16, 2019

This thesis prepared by

Benjamin Cisneros Merino

entitled

PROCESSJ: the JVMCSP Code Generator

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Jan Pedersen, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Dean

Laxmi Gewali, Ph.D.
Examination Committee Member

Kazem Taghva, Ph.D.
Examination Committee Member

Emma Regentova, Ph.D.
Graduate College Faculty Representative

www.manaraa.com

Abstract

We as a society have achieved greatness because we work together. There is power in numbers.

However, when it comes to programming we have not been able to achieve the same level of

symbiosis. This is because concurrent programming has been stigmatized as an advance and ab-

stract subject allegedly harder than sequential programming. Additionally, traditional approaches

to solving concurrent problems using sequential programming become unnecessarily difficult be-

cause most of what newcomers are taught when it comes to concurrent programming (e.g., message

passing and threads), while being technically correct, is completely irrelevant to the problems at

hand. Rather than examining the preconceived notions of the problem, we stubbornly try to fix it

using thread-and-lock models or non-shared memory and message passing models, making rea-

soning about the concurrent behavior of the problem extremely complicated if at all even possible.

Exploiting threads effectively depends on the concurrency model supported by the program-

ming language being used. What is also needed is fine-grained parallelism without the explicit

use of locks and without asynchronicity so programs can be made easy to reason about. I believe

that ProcessJ can be the programming language that provides a bridge from todays languages to

tomorrows concurrent programs. This thesis introduces ProcessJ, a new process-oriented language

with Java-like syntax and CSP-based communication that uses synchronous channels. ProcessJ is

cooperatively scheduled, runs on the Java Virtual Machine (JVM), and allows hundreds of millions

of concurrent processes on a single core. Next, I describe its implementation and features. Follow-

ing this, I explain the translation scheme of ProcessJ source code to Java, and how the generated

code is used to create processes that correctly cooperate in scheduling without using the Thread

or Runnable Java classes.

iii

www.manaraa.com

Acknowledgements

“I would like to express my deepest appreciation to my uncles Connie and Randall, and Kevin and

Robert. Thank you for giving me a home and strength in moments when I thought I could not go

on. I would not have made it this far without your help.

My sincere appreciation also goes to my advisor, Señor Dr. Pedersen, who has been always

helping me and encouraging me through out the master program. For challenging me and making

me realize that I absolutely love compilers and programming languages (even at times when I want

to pull my hair). For his patience, motivation, enthusiasm, immense knowledge, and guidance in

writing this thesis (and for the twenty tacos he promised me).

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Taghva, Dr.

Gewali, and Dr. Regentova.

I am thankful to everyone at the Graduate College; in particular to Janine, Kara, Brianne (my

favorite person), Leslie, Maulik and Payam (for being the only ones whom I could talk to about

football – the real football), and Jennifer (the GA who was favorited more than me, who taught me

all that I know, and who convinced Trey not to give me a tour).

At last but not least, the most important people in my life, my immediate family; especially

my mum for supporting me spiritually throughout my academic and non-academic life – love you

mum!”

BENJAMIN CISNEROS MERINO

University of Nevada, Las Vegas

May 2019

iv

www.manaraa.com

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables ix

List of Figures x

List of Listings xii

List of Grammars xviii

Chapter 1 Introduction 1

1.1 Motivation . 4

1.2 Thesis Outline . 5

1.3 ProcessJ File Structure . 7

Chapter 2 Background 8

2.1 Communicating Sequential Processes (CSP) . 10

2.1.1 Alphabet and Processes . 11

2.1.2 Communication . 14

2.2 Communicating Sequential Processes in ProcessJ 15

2.2.1 Scheduler . 17

2.2.2 Process Mobility and Resumption . 17

2.2.3 Building Processes as a Network of Processes 21

v

www.manaraa.com

2.2.4 CSP Primitives and Other Types . 28

2.2.4.1 Primitive Types . 28

2.2.4.2 Compilation Unit . 29

2.2.4.3 Process . 30

2.2.4.4 Channel . 31

2.2.4.5 Stop and Skip . 35

2.2.4.6 Barrier . 35

2.2.4.7 Alternation . 36

2.2.4.8 Par . 38

2.2.4.9 Timer . 40

2.2.4.10 Record . 41

2.2.4.11 Protocol . 42

2.2.4.12 Constant . 45

2.2.4.13 External . 45

Chapter 3 Related Work 47

3.1 occam-π . 47

3.2 Java Threads . 49

3.3 Communicating Sequential Processes for Java (JCSP) 52

3.4 Message Passing Interface (MPI) . 54

3.5 Open Multi-Processing (OpenMP) . 56

3.6 Hybrid Approach (MPI/OpenMP) . 58

3.7 Actor Model . 60

Chapter 4 Command Line Interpreter (CLI) 64

4.1 Overview . 66

4.1.1 Designing the Library . 66

4.1.1.1 Simplicity . 71

4.1.1.2 Type Safety . 72

4.1.1.3 Capability . 72

4.1.2 Command Line Syntax Rules . 74

vi

www.manaraa.com

4.1.3 Command Line Parsing Library . 77

4.1.3.1 Annotations . 78

4.1.3.2 Reflection . 79

4.1.3.3 Builder Pattern . 79

4.1.3.4 Components . 80

4.1.4 A Command Line Example . 88

4.1.5 Options and Parameters in ProcessJ . 94

Chapter 5 Runtime System and Code Generation 95

5.1 Bytecode Rewriting . 95

5.2 The Runtime Scheduler . 101

5.3 The CSP Runtime System for Java . 103

5.3.1 StringTemplate Library . 103

5.3.2 JVMCSP Runtime Components . 105

5.3.2.1 State Management . 106

5.3.2.2 Process . 106

5.3.2.3 Channel . 116

5.3.2.4 One-to-One Channel . 119

5.3.2.5 One-to-Many Channel . 125

5.3.2.6 Many-to-One Channel . 128

5.3.2.7 Many-to-Many Channel . 131

5.3.2.8 Barrier . 134

5.3.2.9 Par . 137

5.3.2.10 Timer . 140

5.3.2.11 Record . 145

5.3.2.12 Protocols . 148

Chapter 6 Implementation 155

6.1 Full Adder . 155

6.2 CommsTime . 161

vii

www.manaraa.com

Chapter 7 Conclusion 163

Chapter 8 Future Work 165

8.1 Multi-core Scheduler . 165

8.2 Run Queue . 165

8.3 Blocking I/O Calls . 166

8.4 Mobile processes . 166

8.5 Alternation . 166

8.6 Libraries . 167

8.7 Command line library . 167

8.8 Other Backends and Runtimes . 167

Appendix A List of Primitive Types in ProcessJ 169

Appendix B List of Modifiers Available in ProcessJ 170

Appendix C Monitor example in Java 172

Appendix D Complete ‘kill’ Implementation 174

Appendix E An Example of Threads Executing In and Out of Objects 177

Appendix F A Command Line Example Program 179

Appendix G List of Options and Parameters in ProcessJ 181

Appendix H A Full 8-bit Adder Implementation in ProcessJ 183

Appendix I CommsTime Implementation in ProcessJ 189

Bibliography 191

Curriculum Vitae 198

viii

www.manaraa.com

List of Tables

4.1 Command line syntax notation . 75

4.2 Default built-in types supported by the command line interpreter 87

4.3 Main components of the example program . 90

A.1 List of primitive types in ProcessJ . 169

B.1 List of modifiers in ProcessJ . 170

G.1 List of options and parameters in ProcessJ . 181

ix

www.manaraa.com

List of Figures

1.1 An example of concurrency and parallelism . 2

1.2 Parts of the ProcessJ compiler . 6

1.3 The ProcessJ compiler file structure . 7

2.1 The pseudo-code for ProcessJ’s cooperative scheduler 18

2.2 A code snippet of a rewrite example for a mobile process foo in ProcessJ 20

2.3 An implementation of an integrator process in ProcessJ 23

2.4 One-to-One channel communication in ProcessJ 31

3.1 Spaghetti trails of threads of execution . 51

3.2 MPI’s master and slaves processes . 55

3.3 Example of how to create threads in OpenMP . 57

3.4 Hybrid approach example with OpenMP and MPI 59

3.5 Actor model example . 61

4.1 Parts of a command line . 65

4.2 Command line parsing library structure . 78

4.3 Expanded command arguments . 91

4.4 Command usage message . 93

4.5 Command error message . 93

4.6 Command auto-complete message . 94

5.1 Java implementation of the prefix process . 98

5.2 Java implementation of the prefix process continuation 99

5.3 label() invocation before the bytecode rewriting 99

x

www.manaraa.com

5.4 label() invocation after the bytecode rewriting . 100

5.5 resume() invocation before (left) and after (right) the bytecode rewriting 100

5.6 resume() invocation before the bytecode rewriting 101

5.7 resume() invocation after the bytecode rewriting 101

5.8 yield() invocation after the bytecode rewriting . 101

5.9 Runtime system overview . 102

5.10 Class diagram of the different channels in ProcessJ 117

6.1 A full one-bit adder diagram . 156

6.2 Full eight-bit adder output . 161

6.3 The CommsTime network. 162

6.4 CommsTime output . 162

xi

www.manaraa.com

List of Listings

2.1 Example of a process calling a procedure . 19

2.2 The delta process . 21

2.3 The plus process . 22

2.4 The prefix process . 22

2.5 The integrate process . 23

2.6 The producer process . 24

2.7 The consumer process . 24

2.8 The producer, consumer, and integrate processes 24

2.9 Executing a sequence of statements in ProcessJ 25

2.10 The kill process . 26

2.11 producer procedure that includes the kill channel 27

2.12 ProcessJ compilation unit . 29

2.13 The main procedure . 31

2.14 Example of a channel declaration . 32

2.15 Channel-end expressions . 32

2.16 Example of a channel’s end declaration . 33

2.17 Example of a channel’s reading end and writing end declaration 33

2.18 Example of a channel’s ends in a parameter list 34

2.19 Example of a channel write statement . 34

2.20 Correct way to declare a channel write statement 34

2.21 Example of channel’s writing end assignment . 35

2.22 Example of the barrier construct . 36

2.23 Example of the alt construct . 37

xii

www.manaraa.com

2.24 Example of the pri alt construct . 38

2.25 Example of the par construct . 39

2.26 Example of the par enroll construct . 39

2.27 Example of the timer construct . 40

2.28 Example of the timeout construct . 40

2.29 Example of a record construct . 41

2.30 Example of how to create a record . 42

2.31 Example of a record inheritance in ProcessJ . 42

2.32 Example of a protocol construct . 43

2.33 Example of a protocol inheritance . 44

2.34 Example of how to create a protocol . 44

2.35 Example of how to access a protocol’s tag . 44

2.36 Example of how to declare a constant variable . 45

2.37 Example of an external type definition . 45

2.38 Example of an external type declaration . 46

3.1 Example of occam-π code . 49

3.2 Example of generated monitorenter and monitorexit bytecode instructions 50

3.3 Example of a JCSP process . 53

3.4 MPI common basic routines . 55

3.5 Example of an MPI program . 55

3.6 Example of a simple parallel loop in OpenMP 57

3.7 Example of a hybrid program with OpenMP and MPI 59

3.8 Example of an actor model with shared mutable state 63

4.1 Apache Commons CLI command line declaration 67

4.2 Apache Commons CLI’s interrogation stage . 68

4.3 Parsing command line arguments using a for loop 70

4.4 Building an option . 80

4.5 The Command class . 81

4.6 The Parameters interface . 82

xiii

www.manaraa.com

4.7 The Option interface . 83

4.8 The Argument interface . 85

4.9 The OptionParser class . 88

4.10 A command line example . 89

4.11 Executing the -add option . 92

4.12 Executing the -help option . 92

5.1 The prefix process – revisit . 96

5.2 The template for a ProcessJ binary expression . 103

5.3 The binary expression visitor . 104

5.4 ProcessJ code with a binary expression . 104

5.5 Example of a binary expression generated by a string template 104

5.6 Evaluating the presence or absence of an attribute’s value 105

5.7 The PJProcess class . 107

5.8 The PJProcess class – scheduling and descheduling a process 108

5.9 The PJProcess class – yielding and terminating a process 109

5.10 Example of a simple PJProcess program . 110

5.11 The generate the Java class for foo . 111

5.12 The template for a ProcessJ process . 112

5.13 The PJProcess class generated from a template – Java class 113

5.14 The template for a ProcessJ process – fields . 113

5.15 The PJProcess class generated from a template – constructor 114

5.16 The template for a ProcessJ process – constructor 114

5.17 The PJProcess class generated from a template – run method 115

5.18 The template for a ProcessJ process – run method 115

5.19 The PJProcess class generated from a template – main method 116

5.20 The template for a ProcessJ process – main procedure 116

5.21 The template for a ProcessJ process – main . 116

5.22 The PJChannel class . 118

5.23 The PJOne2OneChannel class . 120

xiv

www.manaraa.com

5.24 The PJOne2OneChannel class – write and read 120

5.25 The PJOne2OneChannel class – isReadyToRead and isReadyToWrite 121

5.26 Example of a write statement . 122

5.27 The PJChannelOne2One class generated from a template – write 122

5.28 The template for a ProcessJ channel-write expression 123

5.29 Example of a read expression . 123

5.30 The PJChannelOne2One class generated from a template – read 123

5.31 The template for a ProcessJ channel-read expression 124

5.32 The PJChannelOne2Many class . 125

5.33 Example of a shared reading-end of a channel . 126

5.34 The PJChannelOne2Many class generated from a template – shared read 127

5.35 The template for a ProcessJ channel one-2-many 128

5.36 The PJChannelOne2Many class . 129

5.37 Example of a shared writing-end of a channel . 130

5.38 The PJChannelMany2One class generated from a template – shared write 130

5.39 The template for a ProcessJ channel many-2-one 131

5.40 The PJChannelMany2Many class – shared read 132

5.41 The PJChannelMany2Many class – shared read cont. 132

5.42 The PJChannelMany2Many class – shared write 133

5.43 The PJChannelMany2Many class – shared write cont. 133

5.44 Example of sharing both ends of a channel . 134

5.45 The PJBarrier class . 134

5.46 The PJBarrier class – enroll and resign . 135

5.47 The PJBarrier class – sync . 136

5.48 Example of barrier . 136

5.49 The PJBarrier class generated from a template 136

5.50 The template for a ProcessJ barrier . 137

5.51 The PJPar class . 137

5.52 Example of a par-block . 138

5.53 The PJPar class generated from a template . 139

xv

www.manaraa.com

5.54 The template for a ProcessJ par-block . 140

5.55 The PJTimer class . 141

5.56 The PJTimer class – start and expire methods . 141

5.57 The PJTimer class – read and kill methods . 142

5.58 Example of a timer declaration and timeout statement 143

5.59 The PJTimer object generated from a template – timeout read 143

5.60 The template for a ProcessJ timeout expression 144

5.61 The PJTimer object generated from a template – timeout read 144

5.62 The template for a ProcessJ timer-read expression 144

5.63 The PJRecord class . 145

5.64 Example of a record definition . 145

5.65 The PJRecord class generated from a template – Java class 146

5.66 The template for a ProcessJ record . 146

5.67 Example of a record object created with the new operator 147

5.68 The PJRecord class generated from a template – new operator 147

5.69 The template for a ProcessJ record literal . 147

5.70 Example of access to a record’s member . 148

5.71 The PJRecord class generated from a template – member access 148

5.72 The template for a ProcessJ record member access 148

5.73 The PJProtocolCase class . 149

5.74 Example used to generate the PJProtocol class from a template 149

5.75 Example of access to a protocol’s tag . 149

5.76 The PJProtocolCase class generated from a template 150

5.77 The template for a ProcessJ protocol . 150

5.78 The template for a ProcessJ protocol type . 151

5.79 The PJProtocolCase class generated from a template – tag name 152

5.80 The PJProtocolCase class generated from a template – new operator 153

5.81 The PJProtocolCase class generated from a template – creating a tag 153

5.82 The template for a ProcessJ protocol literal . 153

5.83 Example of access to a protocol’s tag value . 154

xvi

www.manaraa.com

5.84 The PJProtocolCase class generated from a template – tag value 154

5.85 The template for a ProcessJ protocol member access 154

6.1 A one-bit adder implementation in ProcessJ . 156

6.2 The generated Java code for a one-bit adder – part 1 157

6.3 The generated Java code for a one-bit adder – part 2 158

6.4 The generated Java code for a one-bit adder – part 3 159

6.5 The generated Java code for a one-bit adder – part 4 160

6.6 CommsTime implementation in ProcessJ . 162

C.1 Example of a locking mechanism in Java . 172

C.2 Byte code generated by the Java compiler . 173

D.1 Correct kill implementation . 174

E.1 Threads executing in and out of objects . 177

F.1 An example of a command line program . 179

H.1 An 8-bit adder implementation in ProcessJ . 183

I.1 CommsTime code . 189

xvii

www.manaraa.com

List of Grammars

2.1 Grammar for a compilation unit . 29

2.2 Grammar for a procedure declaration . 30

2.3 Grammar for a channel declaration . 31

2.4 Grammar for a channel-end declaration . 33

2.5 Grammar for a stop and skip declaration . 35

2.6 Grammar for a barrier declaration . 35

2.7 Grammar for an alt(ernation) declaration . 37

2.8 Grammar for a block declaration . 38

2.9 Grammar for a timer and timeout declaration . 40

2.10 Grammar for a record declaration . 41

2.11 Grammar for a protocol declaration . 43

2.12 Grammar for a constant declaration . 45

2.13 Grammar for an external declaration . 45

xviii

www.manaraa.com

Chapter 1

Introduction

Since the 1970’s transistors in processors have been doubling roughly every 2 years. This is known

as Moore’s law [91] which is not an actual law but an axiom based on observation; an axiom which

is now reaching its limit. The size of transistors are currently 7nm and the next step, 5nm and

below, posses a problem because of quantum physics. At the 5nm point and below a phenomenon

known as quantum tunneling occurs. This means that the electrons in the transistors will jump

from transistor to transistor making it impossible for them to have reliable on/off states.

Furthermore, Dennard Scaling [43, 48] has already come to an end. This is the principle that

power needed to run transistors stays the same within a given area even as the number of transistors

increases. The amount of energy required to run chips coupled with the close proximity of each

transistor creates a huge heat concern. Without proper cooling, such as liquid nitrogen, the increase

in heat threatens thermal runaway which would cause the chip to fail. This limits the potential for

increasing clock speed past 5GHz without specialized cooling systems. We need new avenues

to improve CPU performance and one such avenue is software based. As chip architecture has

improved, software’s ability to fully utilize those advancements has fallen behind. The 2019 line

of consumer level CPU’s come with 8 cores and 16 threads which is perfectly suited for concurrent

and parallel programming. Meanwhile, programming these architectures to make good use of

multiple cores available is difficult and prone to errors.

Concurrency is frequently misunderstood and mistaken for parallelism. However, concurrency

and parallelism are not the same thing. An obvious example is when people say they are good

at multitasking when they usually mean they are good at concurrency. Concurrency implies the

1

www.manaraa.com

scheduling of independent pieces of code to be executed in an interleave manner. Parallelism, on

the other hand, implies executing 2 or more pieces of code at the same time on separate execution

units. The latter can be achieved by using multi-core processors or multiple computers, whereas

the former can occur in a time-shared manner on a single-core processor. An analogy of ordering

a latte at a coffee shop can be used to explain the difference between them (Figure 1.1). Serving

the orders requires multiple tasks such as taking an order, grinding the coffee beans, preparing the

milk, steaming the milk, combining the steamed milk with the shot of espresso, and serving the

latte. I can then switch back and forth between tasks by when they need to be done for serving

multiple customers. While serving a latte, I can achieve parallelism if I ask someone to help me

with these tasks. I can prepare latte for customer A, while somebody else can serve customer B.

Another example is talking on the phone while driving. I am physically doing both tasks at the

same time and is therefore parallelism; however, texting and driving would be concurrency because

I have to look away from the road to text for a moment and then switch back to driving by looking

at the road repeatedly in order to avoid crashing – don’t text and drive.

Figure 1.1: An example of concurrency and parallelism.

Unfortunately, parallelism and concurrency are notoriously difficult programming challenges.

Examples of what can go wrong include deadlocks, livelocks, data race hazards, and process star-

2

www.manaraa.com

vation. Despite using conventional techniques such as locks, mutexes, and semaphores, along

with various design patterns to avoid these problems, programmers often resort to all kinds of ugly

hacks because of their sequential programming assumptions and intuition. The result is typically an

excessively complicated, restricted, and unreliable program prone to deadlocks and unpredictable

race hazards; not to mention unexplained crashes, undefined behavior, low performance, and faulty

results. In addition, while programs may appear to be fine during testing, they might deadlock or

livelock when scheduled differently or scaled up. Debugging such programs is hard due to the pos-

sibly rare race conditions and non-determinism. Hence, it becomes almost impossible to reason

about or prove properties of lock-based programs.

Despite all these difficulties, the full utilization of computing resources requires parallelism

and concurrency. I believe in a model that is more appropriate and safer, where no locks, mutexes,

semaphores, etc. are required. A model for dealing with parallelism and concurrency that has a

strong mathematical foundation, verification and formal model checking, and is highly efficient

and easy to learn. CSP-based languages – known as process-oriented – fulfill this need. Commu-

nication Sequential Processes (CSP) [63] is a process algebra for modeling complex interactions

between concurrent components. Further still, it enables us to specify and verify the behaviors

of the components involved at each program stage. We can therefore prove things about the code

we write even without running it – we can actually check the behavior of our code using a model

checker – allowing it to be used with confidence.

Even though languages like occam [69]/occam-π [23, 108] exists and provide the standard for

CSP implementation, their development has stalled. For example, occam-π only supports linux OS

32-bit architecture. This is where we come in. ProcessJ is a new process-oriented programming

language featuring CSP-based communication semantics using synchronous channels, a Java-like

syntax, and a multi-threaded JVM-based runtime with a cooperative scheduler. The reason for

the development of ProcessJ is mainly to promote process-oriented programming. I believe that

process orientation is the best way to write reliable fine grained and coarse grained parallel code;

especially when dealing with multi-core architectures, which are becoming increasingly popular.

In this thesis I report on the development of ProcessJ’s runtime system and code generation. I

explain the translation scheme of ProcessJ source code to Java, and illustrate how the compiler

generates code – by ways of producing Java source that after compilation is rewritten to integrate

3

www.manaraa.com

yield and resume points – for processes that correctly cooperate in scheduling on the JVM.

1.1 Motivation

The motivation for this thesis came about from the substantial amount of work that has been done to

the ProcessJ programming language and its compiler since 2009. At the time of writing, ProcessJ

provides a functional implementation. However, the code generation of the ProcessJ compiler is

currently coupled with a number of bugs that required fixing. The work presented within this

thesis contributes in the rewriting and improvement of the ProcessJ compiler. I re-engineered an

existing experimental version of the ProcessJ compiler. In particular, I focused on the usability of

the front end (the CLI), and I reimplemented the code generator (the back end) as it was faulty and

somewhat poorly put together.

The groundwork for this thesis is divided into two parts. First, since many programming lan-

guages have built-in tools for parsing command line arguments, I believe ProcessJ should be no

different. The idea behind ProcessJ’s command line interpreter is to make the process of writing

command line options effortless while allowing rapid customization when needed. Second, fix-

ing and improving the generated Java code was the most important step of this thesis. It required

rewriting the visitor pattern implementation and defining a proper walking procedure for traversing

the syntax tree. This makes it possible for the compiler to correctly convert the syntax tree into the

target code after pushing the intermediate data generated by a visitor object into a template that

translates ProcessJ source code to Java code.

Figure 1.2 illustrates the ProcessJ system. The script file called pjc takes the arguments spec-

ified on the command line and hands them over to the command line interpreter (CLI). The com-

mand line interpreter portion of the compiler has four main responsibilities: parse the command

line value, validate input, determine the source file, and hand over control to the ProcessJ compiler.

The ProcessJ compiler reads .pj files and produces .java files which are then compiled with a

standard Java compiler to produce class files. The compiler is divided into two parts: the front end

and back end. The front end analyzes a ProcessJ source program and creates an intermediate Java

representation, from which the back end generates a Java source file using the StringTemplate

library [77]. From this Java source file, the Java compiler generates class files. The class files are

4

www.manaraa.com

further compiled and then instrumented by the Instrumenter program, which uses the ASM [38]

tool to create code that can work with a cooperative scheduler. The rewritten class files are then

packaged with the ProcessJ runtime elements to form an executable .jar. The script file called pj

runs this executable on the JVM as long as the libraries are installed in the correct locations.

1.2 Thesis Outline

The organization of this thesis is as follows: Chapter 2 presents a detailed introduction to the back-

ground concepts necessary to understand process-oriented programming in ProcessJ, including the

CSP model of parallel computing. Chapter 3 provides a brief description of the various approaches

to concurrency and parallel programming. Chapter 4 gives a comprehensive overview of the com-

mand line interpreter and an example that demonstrates how it works. In Chapter 5, I present the

background work done for the ProcessJ compiler, that is, the implementation details of the run-

time components and code generator. Chapter 6 presents two test programs. This is followed by

a conclusion in Chapter 7. Finally, the possibilities of improving and extending the compiler are

presented in Chapter 8.

5

www.manaraa.com

ProcessJ
Front End

ProcessJ
Back End

ProcessJ
Runtime

ProcessJ
(.flex)

JFlex
(.jar)

Scanner
Lexical
Analysis

Scanner
(.java)

ProcessJ
(.cup)

Java Cup
(.jar)

Parser
Syntax
Analysissym

(.java)

parser
(.java)

Semantic
Checking

Code
Generator

Instrumenter
Bytecode

String Template
Engine (.jar)

asm (.jar)

Java
Compiler

Java Bytecode
(.class)

Modified
(.java)

ProcessJ
Source
Files

Generated
(.java)

Generated
(.java)

Scheduler
Source
Files

Symbol
Table

Error
Handling

Java
Interpreter
(JVM)

Modified
Java Bytecode
(.class)

ProcessJ
Compiler

ProcessJ
Source File
(.pj)

Script
pjc

Command
Line

Interpreter

Front
End

Back
End

Script
pj

101001111· · ·
111100110· · ·

Executable (.jar)

Figure 1.2: Parts of the ProcessJ compiler.

6

www.manaraa.com

1.3 ProcessJ File Structure

Because at UNLV we believe engaging Reproducible Research is key to cummulative science [45,

44], ProcessJ’s source code is publicly hosted on GitHub1 and is available for anyone to contribute

or download it. It will also be available in the near future as a Docker Container. The file structure

of the ProcessJ compiler is shown in Figure 1.3. Note that as we continue to improve the language,

these files or directories may change.

processj/+---- pjc -- install script

+---- pj -- run script

+---- src/+---- PJMain.java -- command line options

+---- ProcesJc.java -- processj compiler

+---- ast/ -- parse tree node hierarchy

+---- cli/ -- command line interpreter

+---- codegeneratorjava/ -- java code generator tool

+---- instrument/ -- java byte code tool

+---- library/

+---- namechecker/

+---- parallel_usage_check/

+---- parser/

+---- printers/

+---- processj/

+---- reachability/

+---- scanner/

+---- typechecker/

+---- utilities/

+---- yield/

+---- lib/+---- JVM/ -- library files

+---- resources/+---- jars/ -- processj components

+---- properties/ -- configurable parameters

+---- stringtemplates/ -- processj template engine

+---- include/+---- JVM/ -- include files

Figure 1.3: The ProcessJ compiler file structure.

1The project’s home is at https://github.com/mattunlv

7

www.manaraa.com

Chapter 2

Background

Most real world situations occur concurrently, and yet the computer tools that we have available

today are not very good at expressing concurrency. If we look around, what we are going to

see is a complex world where many things are happening concurrently at any given time – from

traffic control, to banking and airline tickets, to even trivial activities that take place in our physical

world. For example, we expect to do more than one activity at a time when doing our laundry.

This simple task can be broken down into a set of simpler tasks that can be ran concurrently; we

take the clothes out of the washer, insert them into the dryer, load the washer with more clothes,

and run both simultaneously. Naturally, we describe the behavior of real-world objects through

their interactions with other objects: take the output of one program (clean-wet clothes from the

washer) and send it as the input to another program (clean-wet clothes to the dyer).

Concurrency provides a natural decomposition of real world applications. It is a way to write

software code that can clearly express real world situations. With concurrency, we structure soft-

ware in such a way that we can write code that is easy to use, easy to understand, and, most

importantly, easy to reason about. Sequential processing alone, on the other hand, does not model

the behavior of our physical world accurately. To achieve that kind of behavior, programmers

often rely on locks, mutexes, and semaphores to coordinate the activities of objects produced by

the sequential components in a concurrent program. Naturally, this almost always requires var-

ious programming techniques and development to correctly coordinate access to shared mutable

data. Therefore, when writing parallel applications using conventional procedural programming

languages (with object oriented features), it is common for programmers to step back and devise

8

www.manaraa.com

an entirely new algorithm to avoid data race hazards, as well as unplanned non-determinism.

Unfortunately, many still believe that our world can be described in terms of abstraction, en-

capsulation, inheritance, and polymorphism – the four pillars of Object-Oriented Programming

(OOP). The reason for this widespread belief is the naı̈ve idea that objects can help deal with many

different kinds of systems that have complex behaviors. However, there are limits to the amount

of complexity that programmers can handle using OOP; one, of course, being concurrency (multi-

threading). In OOP, an object that exists in the real world is modeled by its fields and methods,

and the interaction between them [67]. Programmers therefore think of a program as a collection

of interacting objects. Objects, however, provide an artificial sense of security. That is to say, since

objects are passive, they are not in charge of executing their methods in their own thread of control.

As a result, a thread can leave the state of an object inconsistent [75]. This minor issue leads to

larger problems: data race hazards, deadlocks, livelock, and starvation. In addition, it is difficult

to visualize the control flow of complex systems using OOP features. This is most notably true for

systems with a lot of inheritance that use abstract interfaces and have no strong typing. Naturally,

not all systems can be modeled accurately by (passive) objects, and when they can they do not

behave like the real world counterparts they represent.

Process-oriented programming (POP) is a programming paradigm that aims to simplify concur-

rency and parallelism based on Hoare’s Communication Sequential Process Calculus [63]. POP is

far more similar to the way the real world works. It promotes the use of independent processes (ob-

jects) that interact with each other in regular or chaotic patterns, and at all levels of scale. Contrary

to OOP’s view of the world, in POP, a concurrent system is modeled by the interaction between

individual processes. These processes interact with one another by communicating through syn-

chronized channels, or through multi-way synchronization points. This means that programmers

can define larger and larger concurrent systems without worrying about undesirable nondetermin-

ism and/or unforeseen side effects. While concurrency in various programming languages is made

difficult due to the minute subtleties required to implement correct access to shared data, Pro-

cessJ promotes a different approach in which shared values are passed around along channels – in

fact, these variables are never shared by different threads of execution. I begin this chapter with

an introduction to Communication Sequential Processes (CSP) before explaining the design and

development of PocessJ using CSP-like constructs.

9

www.manaraa.com

2.1 Communicating Sequential Processes (CSP)

Communicating Sequential Processes (CSP) [12, 41, 63, 64, 88] is a formal process algebra in-

troduced by Hoare in 1978 to describe concurrent systems using processes1 and events. It is a

paradigm for expressing concurrency on the basis of message passing without sharing data (mem-

ory variables), and for solving the problem of coordinating synchronous (rendezvous) communica-

tion between processes. The idea behind CSP, in particular, is that a program consists of multiple

processes that communicate with each other, each process represents the execution of a sequential

program, and the simplest form of interaction is done by communicating, or passing, messages

synchronously along channels.

While processes are composable (e.g., to create a network of processes, they combine and

connect to each other), they perform internal activities in isolation. This means that other processes

cannot see these activities unless they interact (engage in events) with the outside world. A process

must therefore place (write) some data in the message that it wishes to send for other processes

to see (read) and assign the data in the message to a local variable. A receiving process may

choose to ignore the data in the message and only be concerned with the fact that a message has

arrived. In a situation such as this, the message received can be regarded as a ‘signal’ indicating

that communication was established. Such behavior can be used to simulate phone calls using

processes to represent telephones with recording machines. For example, for a phone conversation

to take place, both the caller (sender) and the callee (receiver) must be present because, otherwise,

no one would pick up the phone. When a phone call is made, the sender waits until the receiver

accepts the call. If the receiving process accepts the call, then communication is established. As a

result, any message placed in the ‘phone line’ will be received. However, if instead the recording

machine answers the phone call, depending on whether the machine is able to take a message, the

message may or may not be ignored.

Given that the behavior of a process is described through its interaction with other processes,

the outside world can neither see the process’s data or execute its algorithms. It is of note that,

1Note, in contrast to the term used in operating systems, the term process in CSP is used to describe an entity that

is part of a complex system. Such a complex system consist of less complex components, which in term consist of

simple components that operate sequentially inside the entire system.

10

www.manaraa.com

although values can be handed off to other processes, the algorithms are executed by the process

itself in its own thread of control. Unlike objects in OOP whose (protected or private) data is at the

mercy of any thread that sees it [21], a process can change its values only when it wishes to do so.

CSP is built on two basic primitives: processes and events. A process is an ordered sequence of

operations which represent a behavior in a system. For example, the simplest form of behavior is

stop – the process does not engage in any event and will not terminate – and skip – the process does

not engage in any event but will terminate. Furthermore, since there is no notion of data (which

is the idea that when a process gives a value to another process, it no longer has it), a process is

abstractly described by the event or sequence of events that it produces. Events, on the other hand,

are the way in which processes communicate or interact, and they may occur instantaneously when

executed by the system. Each process sequentially produces events that are atomic, synchronous,

and instantaneous, and that can involve other processes. Naturally, if an event involves multiple

processes, the processes will block until they are all engaged in the event. These processes will

then carry out such an event simultaneously.

CSP processes are developed from events and other processes using a number of operators. In

order to understand CSP, let us briefly look at the notation used to describe and analyze systems

consisting of processes. In particular, let us look at the alphabet and processes, and communication.

2.1.1 Alphabet and Processes

In CSP, a process is the behavior of an object described with its alphabet. Each process has an

alphabet defined as a set of names of all events that may be relevant to the process itself. This

is denoted by αP = { event1, event2, event3, . . . , eventn }, where αP describes all the possible

interactions with process P2. For example, both an ATM3 and a PERSON3 can be modeled as

processes with a card event and a money event. These processes can therefore have an alphabet

similar to this:

αATM = { card, money }

αPERSON = { card, money }

2The letters P, Q, R are reserved for arbitrary processes.

3Words written in all-upper case letters defined specific processes.

11

www.manaraa.com

Where card and money represent a set of atomic interactions of the system we are trying to

model; card represents the action of inserting a card in an ATM card reader, and money represents

the action of taking money from the ATM’s dispenser. While these events may be atomic names

(e.g., card and money), they may also be compound names (e.g., dispenser.open, dispenser.close)

or input/output events (e.g., mouse?xy, screen!bitmap). Indeed, a process’s alphabet is simply

the set of actions it performs, we use the alphabet to create a system that can be modeled through

a chain of events. We can then verify and prove deadlock and livelock freedom based on the

basic assumptions made in said system using tools such as the Failures-Divergences-Refinement

model-checker (FDR) [14] together with the concept of refinement.

Although we normally specify an alphabet for each process (referred to as αP in the above-

mentioned process P), I will leave this notation implicit and simply refer to the process by its name

for the rest of this section.

Prefix Operator (→)

The prefix operator, denoted by a → P, is used to engage a process in an event. For example,

the process P = a → skip performs event a then behaves as skip. In other words, the process

engages in event a and then ends (it does nothing but terminates successfully). Naturally, ending

a definition of a process with the definition of another process enable us to create processes that

only engage in a finite sequence of events. To create an endless sequence of events in CSP, we use

recursion for repeated tasks. For example, the process P = a → P describes a repetitive behavior

for process P. Therefore, by having processes recurse on themselves, we can create processes that

communicate forever.

External Choice (�)

The external choice operator, denoted by R � Q, is used to execute a choice between R or Q. For

example, the process P = (a → R) � (b → Q) chooses one event. This means that if only a is

available then P behaves as a → R, or if only b is available then P behaves as b → Q. However,

if both events are available, then one is arbitrarily chosen depending on the actions offered by the

environment. As another example, let us consider the following process: P = (a → R) � (a →

Q). Notice that both events start with an a, which can lead to a non-deterministic choice. CSP

12

www.manaraa.com

typically allows the environment to choose which event to take. However, in a situation like this, it

will allow P to make the decision with no influence from the outside world whatsoever. Naturally,

then, it should be cleared that P will consider this choice internally.

Internal Choice (u)

The internal choice operator, denoted by R u Q, is used to execute an arbitrary choice between

R or Q. For example, the process P = (a → R) u (b → Q) behaves as either a → R or b → Q.

However, the choice is decided by P itself internally without considering the external environment.

In addition, this process may deadlock if the environment only provides an a when it decides to do

a b instead. It should be pointed out that for the above-mentioned process P = (a → R) � (a →

Q), where the choice is made non-deterministically, this is the same process as P = (a → R) u

(a→ Q). Therefore, the choice between the two processes is entirely arbitrary and different from

that of the � operator. That is to say, CSP will give either a→ R or a→ Q, but without providing

the external environment with a way for choosing which.

Parallel Composition (‖)

The parallel composition, denoted by R ‖ Q, describes a process that behaves like a system in

which R and Q are allowed to proceed concurrently and independently. However, they must agree

to synchronize on all the common events. In other words, processes interact by handshake com-

munication. For example, consider the following three processes:

R = a1 → b→ skip

Q = a2 → b→ skip

P = R ‖ Q

Process P behaves as either a1 → a2 → b → skip or a2 → a1 → b → skip. Notice the

interleaving on a1 and a2, and synchronization on b. This leads to the situation where R can

engage in a1 without synchronizing with Q. Similarly for Q on event a2. It should therefore be

cleared that the two possible execution traces4 for P is the set {< a1, a2, b,X>, < a2, a1, b,X>},

where events a1 and a2 can occur in any order. In spite of that, both processes must synchronize

4A trace represents the sequence of all events a process may perform.

13

www.manaraa.com

on the shared event (namely b if b ∈ αP) in order to make further progress, after which P should

end. Note that the special eventX is used to indicate termination.

As another example, consider a slightly modified version of the processes described above:

R = a→ b→ skip

Q = b→ a→ skip

P = R ‖ Q

If we assume that the only common event shared by R and Q is b (that is, b ∈ αR and b ∈ αQ),

then process P behaves as a→ b→ a→ skip. In contrast with our first example, in order for R to

interact with Q, they must both agree on an event, and on the condition that R must initially engage

in event a before both processes can engage in event b. Once R does so, to make further progress,

it must synchronize with Q on b, after which Q can engage in a. This means that P has a traces set

{< a, b,X >, < b, a, X >}, where events a and b must occur in that order.

Sequential Composition (;)

The sequential composition, denoted by P ; Q, is used to execute P and Q sequentially. For exam-

ple, the process P ; Q behaves as P first until P terminates, then behaves as Q until Q terminates,

and finally behaves like skip (which again represents a successful termination) when the behavior

of the process is required to continue. Naturally, if P never terminates then neither can Q. It should

be mentioned that, unlike parallel composition, sequential composition operates only on processes

and not events; therefore, both P and Q must also be sequential processes for the ; operator to

work.

2.1.2 Communication

A process will often want to transmit data to another process; fortunately, CSP enables events (that

conceptually consists of channel names) to carry zero or more data components. Communication

in CSP is an event described by a pair c.v, with c denoting the name of a channel and v denoting

the component sent across this channel by the outputting process, where each pair of c.v represents

a different event. A channel is a special type of event that is (usually) part of the alphabet of two

processes: the sender and the receiver. Naturally, to enable two processes to communicate over a

14

www.manaraa.com

channel, both processes (whose alphabets include the channel) must first engage in it. Furthermore,

we define the set of data which a process can communicate on a channel (say) c as { c.v | v ∈ Values

} for an event that inputs and outputs values of type Values. We can then use input (c?x) and

output (c!v) operations to allow communication between two processes. These input and output

operations, however, are simply a shorthand resulting from the following identities:

c!42→ skip ≡ c.42→ skip

c?x→ skip ≡ (c.42 ��v∈V\{42} c.v)→ skip

Consider the following three processes:

R = c!42→ skip

Q = c?x→ skip

P = R ‖ Q

The above example shows that the resulting combined process P outputs the value 42 from R,

which is supplied via channel c to Q and then bound to (some variable) x. In order words, if R

engages in c!42 and Q engages in c?x, then communication will be established and the value 42

will be passed along the channel c. It should be mentioned that the channel used in the above

example assumes rendezvous behavior. This means that the sender and receiver will block any

operation on the channel until the message is transmitted. Therefore, data can be safely exchanged

between R and Q.

While the syntax of CSP (of which there is much more to say) cleanly reflects an intuitive

way to describe the behavior of objects in terms of events and other processes, I will end the

CSP crash course as I have covered the concepts necessary to understand the process-oriented

concurrency primitives (mainly process, channels, barriers, and alternations) with their respective

CSP semantics used in ProcessJ.

2.2 Communicating Sequential Processes in ProcessJ

ProcessJ [79, 80, 81, 82, 94, 95, 98, 99] has been under development at the University of Nevada,

Las Vegas (UNLV) since 2009. It is intended both as a programming tool for research in concurrent

and parallel programming, and as a programming language used for the introduction of CSP to

UNLV Computer Science students.

15

www.manaraa.com

ProcessJ is based on CSP process algebra [63, 64] and the π-calculus [71, 70]. It is a general

purpose process-oriented programming language; semantically it is close to occam-π, but with a

syntax similar to Java (without objects) and with added constructs for CSP-based communication

using synchronous typed channels. It has a dynamic concurrency model built into its core design,

which is deterministic by default. Such model can be expressed explicitly using the ‘par’ construct

for parallel composition. However, a special feature called ‘alternation’ (e.g, a choice to choose

from among many other alternatives) can be used to introduce non-determinism to represent paral-

lel computations. As a result, non-deterministic systems can be built when necessary, regardless of

the external context within which they are executed, simply by making an external choice available

through alternations.

ProcessJ supports all the basic types (see Appendix A) and control flow structures of Java;

for example, a for-loop statement in ProcessJ is the same as in Java. In addition, while the new

process-oriented concurrency primitives – process, channels, barriers, and alternations – have a

familiar Java syntax feel, their semantics directly reflect those of occam/occam-π: based on the

CSP concept of concurrent process synchronization, along with features that allow dynamic pro-

cess creation and process mobility. This simply means the following: that 1) with these relatively

simple primitives, ProcessJ allows programmers to write quite powerful parallel and distributed

programs that are easy to reason about with respect to the interactions between concurrent com-

ponents; and 2) a formal model-checker tool like FDR [14] can be used to statically prove vital

properties of such programs; typically, this is used to ensure the absence of deadlock, or refinement

of a specification.

As a process-oriented language, ProcessJ is composed of processes, each of which is executed

in its own context. This means that every process has its own private state in which no other

process, except the owner, has access to it. Since there is nothing to share, there is nothing to

fight for. Having no mutable shared data between processes means there is no need for locking

mechanisms. As a consequence, ProcessJ programs cannot have race conditions. In addition, there

is no need for complex logic either. Having message passing for communication among processes,

inherently, avoids the risks of race hazards (even when processes are forming dynamically). This

allows the ability to create complex networks of communicating processes, which can be used to

model non-trivial real world applications.

16

www.manaraa.com

2.2.1 Scheduler

Like any other CSP-based programming language, ProcessJ uses cooperative scheduling; that is,

Java threads are not used as a unit of concurrency. Recall that in a cooperative scheduler (also

known as non-preemptive), a process does not stop until it decides to do so voluntarily [66]. To

enable all parts of a system to progress fairly, our process model must support and correctly im-

plement explicit yielding [82, 94]. Since our scheduler itself cannot decide when a process should

yield, the process must explicitly give up the CPU for other processes to get run. Such yielding

must happen at synchronizations points like channel communication, barrier synchronizations, alts,

timer timeouts, and par blocks. This is because processes that either receive or deliver information

may block. When this happens, our runtime scheduler is left with no alternative but to schedule

other processes, including those whose actions (which again receive or deliver information) will

unblock the first set of processes.

ProcessJ’s scheduler is extraordinarily simple. Whether processes are executed by a single

or multi-threaded scheduler, it does the basic operations a cooperative scheduler requires: take a

process out of the queue for as long as it has processes. If the process is ready to run, let it run

until it either terminates or yields. When the process yields or is not-ready to run, put it back in the

queue. Repeat the same steps until the queue has no processes. A pseudo-code snippet for such a

scheduler can be seen in Figure 2.1.

2.2.2 Process Mobility and Resumption

While processes can yield mid-execution and then resume, be disconnected from their local envi-

ronment and then be reconnected to it, or be moved (by communication over a channel) to some

environment, their state must be saved and restored. In ProcessJ, a mobile process is a process

that stops running when it is explicitly suspended; this can be done with the suspend statement.

When a process is in its suspended state (e.g., it is not executing), it becomes a piece of data that

can be transmitted to another process over a channel. The suspended process can be resumed only

by invoking it and giving it the proper parameters it needs. Although we can ‘pause’ a running

process at any time, and resume it later without having to start it all over again, execution must

continue on the line indicated after the statement that suspended the process and with the process’s

17

www.manaraa.com

Queue<Process> runQueue;
. . .
// enqueue one or more processes to run
. . .
while (!runQueue.isEmpty()) {

Process p = runQueue.dequeue();
if (p.ready())

p.run();
if (!p.terminated())

runQueue.enqueue(p);
else

p.finalize();
else

runQueue.enqueue(p);
}

Figure 2.1: The pseudo-code for ProcessJ’s cooperative scheduler.

local state unchanged.

Initially, in [82], one of the earliest experimental versions of ProcessJ, we used an activation

record5 as a means of preserving a process’s state before it yielded. Every process invocation

was linked to an activation record created on the fly and then stored, where each activation record

contained information needed to manage a process; typically, this included the state of the param-

eters and local variables, and the links to other activation records. While this approach facilitated

access to locals, as well as parameters – including variables from other activation records, it had

performance implications when creating and maintaining activation records for the called process.

For example, when a process invoked a procedure, and the callee (the called process) engaged in

a synchronization event, the callee had to yield. This required saving all locals and parameters

in two separate activation records (one for the caller and another for the callee) before the called

process yielded.

5An array of Java Objects that hold values of locals and parameters while a process was in its suspended state.

18

www.manaraa.com

Listing 2.1: Example of a process calling procedure.

1: public void foo(chan<int>.read in) {

2: int d = in.read(); // synchronization event

3: println("read: " + d); // procedure invocation

4: ...

8: }

9:

10: public void bar(chan<int>.read in) {

11: ...

15: foo(in); // process invocation

16: }

17:

18: public void main(string[] args) {

19: chan<int> c;

20: bar(c.read);

24: ...

25: }

In Listing 2.1, the read() in foo will yield, which means that bar must also yield. When bar

is rescheduled to run, the flow of control will have to make it through bar, continue through foo,

re-attempt the read in foo, and, finally, call println. Naturally, this demanded a high amount

of bookkeeping. In particular when re-establishing variables from an activation record required

placing the values of all locals and parameters into an Object array, and then placing this array

in the activation record stack. As a consequence, this approach was later discarded in favor of a

simpler approach using auto-generated code.

Currently, mobile processes are being implemented as a Java class [81, 99] in ProcessJ. Each

mobile process becomes a class that extends the ProcessJ class PJProcess. This makes possible

the mobility of processes to other computational environments when they change state (e.g., when

processes suspend or resume). We approach the rewriting, that is, the way a process is represented

by the abstract PJProcess class, in the following way: the ProcessJ compiler rewrites all local

variables, including parameters, which form part of a procedure as fields. Replacing theses local

and formal variables with fields is an easy way to maintain and preserve state when a process

resumes execution. For example, when a process becomes active again (the process is restarted),

all fields (originally locals or parameters) contain the same values as they did before. Naturally, we

19

www.manaraa.com

no longer have to worry about losing or correctly updating values because a process always carries

its own data around. A code snippet of a rewrite example can be seen in Figure 2.2.

Java Code

public class foo extends PJProcess {
PJChannel<Integer> pd$r1; // original r
int ld$d1; // original d

ProcessJ Code public foo(PJChannel<Integer> pd$r1) {
this.pd$r1 = pd$r1;

public void foo(chan<int>.read r) { }
int d;
d = r.read(); ⇒ @Override
println(”read: ” + d); public synchronized void run() {

} switch (runLabel) {
case 0: break;
case 1: resume(1); break;
case 2: resume(2); break;
default: // runtime error

}
. . .

}

Figure 2.2: A code snippet of a rewrite example for a mobile process foo in ProcessJ.

Note how a ProcessJ procedure (left) is translated into a Java class (right) that holds the data

being transferred, namely, the locals and parameters of the procedure. Since a process is repre-

sented as an object created from the PJProces class, no complex trickery is needed to keep track

of its variables when it yields or when it is woken up by the scheduler. When a write operation

occurs, for example, data is retrieved directly from the process and then placed in the channel.

Similarly for a read operation, when data is read from the reading end of a channel, it is directly

stored in the process. Additionally, we no longer have to worry about activation records. A call

to a procedure, whether it yields or not, is treated as a concurrent process wrapped in a par-block.

This means that when a procedure is invoked, the caller yields. That is to say, the caller remains

in a not ready state and waits until the called procedure (which is now a process) is finished. Once

the called procedure is finished running, the scheduler will reschedule the caller so that it can run

again. The caller will then continue execution on the line following the yield instruction.

20

www.manaraa.com

2.2.3 Building Processes as a Network of Processes

In this section, an example of an ‘integrator’ process is used to demonstrate a complex network of

independent objects all acting and interacting with each other. In ProcessJ, it is easy to write code

that runs a number of processes concurrently. Consider three simple processes: delta which reads

input from an input channel and writes the read value to two output channels (Listing 2.2); plus

which reads input from two input channels, adds the read values together and writes the sum to the

output channel (Listing 2.3); and prefix which takes (as a parameters) an initial value, an input

and an output channel (Listing 2.4).

Listing 2.2: The delta process.

1: public void delta(chan<int>.read in,

2: chan<int>.write out1,

3: chan<int>.write out2) {

4: while (true) {

5: int x;

6: x = in.read(); // read input from Plus

7: par {

8: out1.write(x); // write to output stream

9: out2.write(x); // write to Prefix

10: }

11: }

12: }

21

www.manaraa.com

Listing 2.3: The plus process.

13: public void plus(chan<int>.read in1,

14: chan<int>.read in2,

15: chan<int>.write out) {

16: while (true) {

17: int x1, x2, sum;

18: par {

19: x1 = in1.read(); // read from input stream

20: x2 = in2.read(); // read from Prefix

21: }

22: sum = x1 + x2; // increment current-sum

23: out.write(sum); // write to Delta

24: }

25: }

Listing 2.4: The prefix process.

26: public void prefix(int initVal,

27: chan<int>.read in,

28: chan<int>.write out) {

29: out.write(initVal);

30: while (true) {

31: int x;

32: x = in.read(); // read from Delta

33: out.write(x); // write to Plus

34: }

35: }

The process network in Figure 2.3 shows how these three processes can be combined to form

the integrate process, a process composed of the previous three using the par construct. Note

that a, b, and c are internal channels to the integrate process, and in and out are input and

output channels to the environment (Listing 2.5).

22

www.manaraa.com

Figure 2.3: An implementation of an integrator process in ProcessJ.

Listing 2.5: The integrate process.

36: public void integrate(chan<int>.read in,

37: chan<int>.write out) {

38: chan<int> a,b,c;

39: par {

40: plus(in, c.read, a.write);

41: prefix(0, b.read, c.write);

42: delta(a.read, out, b.write);

43: }

44: }

Additionally, we can write a producer process (Listing 2.6) to produce numbers on the in

channel, and a consumer process (Listing 2.7) to read values from the out channel, and then

use them to create another (layer of) parallel composition of processes. Since we use channels

for message passing, the producer and the consumer do not have to know about each other.

Naturally, messages can be delivered in the order in which they are sent, making the system much

easier to reason about.

23

www.manaraa.com

Listing 2.6: The producer process.

53: public void producer(chan<int>.write out) {

54: int x = 0;

55: while (true) {

56: out.write(x);

57: x++;

58: }

59: }

60:

Listing 2.7: The consumer process.

45: public void consumer(chan<int>.read in) {

46: while (true) {

47: int x;

48: x = in.read();

49: println(x);

50: }

51: }

52:

When the main program (Listing 2.8) is run, the producer(), consumer, and integrate() are

executed concurrently as processes inside the par-block; that is, they all run at the same time.

Listing 2.8: The producer, consumer, and integrate processes.

60: ...

61: public void main(string args[]) {

62: chan<int> in, out;

63: par {

64: producer(in.write);

65: consumer(out.read);

66: integrate(in.read, out.write);

67: }

68: }

69: ...

24

www.manaraa.com

We should emphasize that the opposite of a ‘par’ (parallel) block is a ‘seq’ (sequential) block.

We are familiar with sequential blocks from many programming languages. In Java, ignoring

threading for now, all blocks are sequential. Recall, a sequential block consist of a number of

statements within a set of { }. These statements are normally executed sequentially from top to

bottom in the order that the code appears. This is true in ProcessJ as well. However, a sequential

block may be prefixed with the set keyword.

Listing 2.9: Executing a sequence of statements in ProcessJ.

60: ...

61: public void main(string args[]) {

62: chan<int> in, out;

63: seq {

64: par {

65: producer(in.write);

66: consumer(out.read);

67: integrate(in.read, out.write);

68: }

69: }

70: }

71: ...

The program in Listing 2.9 is equivalent to the one in Listing 2.8. This programming style is

an inherited option from the classical occam language, a language from the 80’s. Even though

this program (Listing 2.9) is equally valid, the preferred way to execute sequential statements in

ProcessJ is by using the sequence structure built into the language, namely the semicolon.

Determinism in ProcessJ

The above scenario shows how the par construct can be used to create a (complex) system from

fine-grained components that do not retained any information. Further still, the outputs of this

system depend only on the inputs it receives, regardless of the features of the runtime environment

in which the system operates. In other words, whether the distribution of processes in this system

runs on a single-core or multi-core machine, it is independent from the scheduling policies of

the runtime environment (the JVM in this case). Consequently, the model of computation in this

system is inherently deterministic.

25

www.manaraa.com

Non-determinism in ProcessJ

While the above parallel system is deterministic, it runs forever. None of the processes terminate

– clearly, due to their while-loop condition. In order to gracefully terminate the entire network, we

need to introduce a channel on which we can send a ‘kill’ signal that will terminate the network

of communicating processes; graceful termination, however, is not always a simple task. To do

this in the correct order, the implementation of each component must forward a ‘kill’ signal before

terminating. A ‘killer’ channel can be used to this effect (Listing 2.10). This channel will carry a

boolean value that indicates whether or not a process should terminate, where true means ‘forward

the signal and terminate’ and false means ‘carry computation’. Of course, this requires making

changes to the body of each procedure: integrate, producer, and consumer; including the main

procedure (see Appendix D for the complete implementation).

Listing 2.10: The kill process.

69: public void killer(chan<boolean>.write killProduce) {

70: timer t;

71: t.timeout(3); // wait some time

72: killProduce.write(true); // send kill signal

73: }

Note that there is still the possibility for deadlock if the producer gets stuck in its write call,

and the consumer get stuck in its read call. The reason is that the ‘kill’ message may not be

received at specific points of communication during the execution of the program. To avoid this,

we need to safely distribute the signal to all processes, starting from the killer process. We

let the killer process send a ‘kill’ signal to producer, let producer send the ‘kill’ signal to

integrate, and, finally, let integrate send the ‘kill’ signal to consumer. Since we want a

process to terminate, we need to make sure that a communication made on the ‘killer’ channel gets

intercepted by the process. When this happens, the process should respond by sending the ‘kill’

signal before terminating itself.

Indeed, a ‘kill’ signal can terminate a process only when it is idling and waiting for a respond,

how can we make the sequence in which this signal arrives non-deterministic? Let us suppose that

a process has a number of alternatives to choose from as to what to do next. Furthermore, suppose

26

www.manaraa.com

that one of these alternatives causes the process to stop looping and terminate normally. What

we need is a mechanism for alternating between these choices; such a primitive is incorporated

into ProcessJ. An alt (or alternation) consist of a number of guarded statements. Each guard, in

this instance, is a channel-read expression that when ‘ready’ represents the communication that

can complete. When execution reaches an alt, all guards that are ready are marked and one is

chosen at random. The process can then select one alternative from among the available channels

(Listing 2.11).

Listing 2.11: producer procedure that includes the kill channel.

25: public void producer(chan<int>.write out,

26: chan<boolean>.read killMe,

27: chan<boolean>.write killIntegrate) {

28: int i = 0;

29: boolean ok = true;
30: while (ok) {

31: boolean b;

32: alt {

33: b = killMe.read(): {

34: ok = false;
35: killIntegrate.write(true);
36: }

37: skip: {

38: out.write(i);

39: i=i+1;

40: }

41: }

42: }

43: }

All that is left to do is to add a ‘killable’ behavior. Such behavior will come from doing a read

on the ‘killer’ channel when there is data available (see line 33 in Listing 2.11). Notice how the

above code will not deadlock and will now terminate gracefully. This is because when producer

engages in the communication made on the ‘killer’ channel, namely, killMe, it send the ‘kill’

signal before terminating itself. This signal is input by the integrate process, in parallel with the

consumer process, which then outputs the signal to consumer before terminating itself. consumer

then inputs the signal, and finally, terminates itself without outputting the current running-sum. It

27

www.manaraa.com

should be mentioned that while the choice itself is made arbitrarily in the above example, it can

also be based on highest priority selection or fair selection.

2.2.4 CSP Primitives and Other Types

A ProcessJ program may contain any number of type declarations. At the top-level, ProcessJ

supports five different declaration:

• Procedure declarations,

• Protocol declarations,

• Record declarations,

• Constant declarations,

• Extern type declarations

In this section I will give an overview of the ProcessJ language. Before I consider the five

different top-level declarations, of which the first three are also type constructors, I will start with

a short introduction to ProcessJ’s atomic type system.

2.2.4.1 Primitive Types

ProcessJ supports all the typical primitive types known from most other programming languages.

These include integral types of various sizes, floating point types, booleans, and strings. In ProcessJ

a string is a primitive type (ProcessJ does not have the notion of objects, and since Java implements

strings as an object, this seemed necessary); in addition, there are two more primitive types. The

first is a timer type, which in fact is the reading end of a timing process that is always willing

to engage in communication – but it may also be used as timeouts. The second is a barrier

type, which is a special construct that defines a full barrier. Processes enrolled (using the keyword

enroll, which can be prefixed by a par or a for-loop, if needed) on a barrier can synchronize on

it by using the sync keyword.

28

www.manaraa.com

2.2.4.2 Compilation Unit

The Extended Backus-Naur form (EBNF) grammar for a compilation unit is shown in Gram-

mar 2.1.

Grammar 2.1: Grammar for a compilation unit.

compilation unit → pragmas∗ [package declaration]
import declarations∗ type declarations∗

A ProcessJ file constitutes a compilation unit which forms the input for the ProcessJ compiler.

A ProcessJ compilation unit (Listing 2.12) has the following structure:

Listing 2.12: ProcessJ compilation unit.

1: [#pragma declaration(s);]

2:

3: [package declaration(s);]

4:

5: [import declaration(s);]

6:

7: [top-level type declaration(s);]

• An optional list of pragmas (of the form pragma ...). Pragmas are used to pass options

to the compiler when compiling a specific file. Currently, pragmas are only utilized in the

library generating system.

• An optional package declaration of the form package <name>. A package name should,

like in Java, correspond to the directory path in which the file is located.

• An optional list of import statements of the form import Importing a file allows us

to use types and procedures (which are also types) from other compilation units.

• An optional list of type declarations. This includes the definition of records, protocols, and

procedures.

29

www.manaraa.com

2.2.4.3 Process

The EBNF grammar for a procedure declaration is shown in Grammar 2.2.

Grammar 2.2: Grammar for a procedure declaration.

proc type → modifier∗ type ID ([type ID , type ID)∗]) [annotations]
[{ statement∗ }]

modifier → public | private | native | const | mobile | protected
annotations → [(ID = (ID | boolean literal | numeric literal))∗]

A procedure is considered a type in ProcessJ. The reason is that procedures, when run, are

considered processes. Given that processes describe the basic building blocks of any ProcessJ

program, a program can be described as a collection of procedures, where each procedure executes

concurrently and communicates with each other via channels. Since ProcessJ supports mobile

processes, procedures can be communicated between other procedures as a passive piece of data.

In ProcessJ, the only elements required for a procedure6 declaration are: a name, a return type,

a pair of parentheses, and a body. Simply put, a procedure can have a number of modifiers, or none

in which case it is assumed to be protected (see Appendix B for a list of available modifiers)

– although in Java a procedure is assumed to have the default access modifier, such modifier

does not exists in ProcessJ. Furthermore, all procedures must declare a return value type, or void

if they do not return a value, a comma-delimited list of input parameters, preceded by their data

types, enclosed by parentheses, and a body enclosed between braces.

Finally, all ProcessJ programs need a main procedure to run. This main procedure (List-

ing 2.13) should have the modifier public, and it should take in one argument, namely an array of

strings.

6An annotation such as [yield=true], which in early experimental versions of ProcessJ provided a way for

the compiler to differentiate between a regular (Java) procedure and a process, is not longer required to appear after a

procedure’s enclosing parenthesis.

30

www.manaraa.com

Listing 2.13: The main procedure.

1: public void main(string args[]) {

2: println("Hello World!");

3: }

2.2.4.4 Channel

The EBNF grammar for a channel declaration is as shown in Grammar 2.3.

Grammar 2.3: Grammar for a channel declaration.

channel → [shared [read | write]] chan < type >

A channel is the simplest mechanism for coordinating and establishing communication among

processes within an independent or cooperative system. In ProcessJ, channels are synchronous,

uni-directional, and unbuffered. The basic channel construct is point-to-point (depicted in Fig-

ure 2.4) whereby one process can communicate or exchange data with another process. In addition

to this basic channel, other channel versions (like one-to-many, many-to-one, and many-to-many)

can also be used.

Figure 2.4: One-to-One channel communication in ProcessJ.

To understand how channels work, think of a channel as being a “piece of a garden hose”

through (though we say ‘on’) which data can flow in one direction (channels are not bi-directional).

31

www.manaraa.com

Other versions of channels can have shared ends, which in the garden-hose analogy means that ends

have spreaders on. Rather than water flowing in the hose think of marbles. If the receiving end

is shared the marble will eventually end up going down one of the end of the spreader and only

one receive will get it (it does not replicate itself like in a traditional broadcast). This is exactly

how channels work in ProcessJ. A process can communicate directly by exchanging messages or

indirectly by reading from and writing to variables. Whichever process has the writing end can

write a value to the channel and whichever process has the reading end can read the value that the

sender sent. If a process is ready to send (write) a message, it will block until the receiving process

is ready to accept the message. Similarly for a receiving process, if it is ready to accept (read) a

message, it will block until the sending process is ready to send the message.

All channels are uni-directional. This means that values flow only from one end to the other

and never in the opposite direction; therefore, values are always passed from writers to readers. An

example of channel declaration is shown in Listing 2.14. This declares a channel variable called c

that carries integer values.

Listing 2.14: Example of a channel declaration.

1: chan<int> c;

When declaring a channel, we must specify the type of data carried on that channel. We do

this by specifying a type between a set of angular brackets (< >). The above declaration declares

a channel called c as a local variable. Such channel has a reading end and a writing end. We can

obtain these ends by using the two expressions in Listing 2.15.

Listing 2.15: Channel-end expressions.

1: c.read

2: c.write

Where c.read is a channel-end expression that evaluates to the reading end of the channel,

and c.write is a channel-end expression that results in the writing end of the same channel. To

communicate data along the channel c, all we have to do is write something to the writing end and

read something from the reading end.

32

www.manaraa.com

Channel Ends

The EBNF grammar for a channel-end declaration is as shown in Grammar 2.4.

Grammar 2.4: Grammar for a channel-end declaration.

channel end → [shared] chan < type > . (read | write)

A channel consists of two ends: a reading end and a writing end. We can only read from the

reading end, and we can only write to the writing ends. Any channel variables ends can be obtained

by suffixing either a .read or a .write (Listing 2.16).

Listing 2.16: Example of a channel’s end declaration.

1: public void f(chan<int>.read in) {

2: ...

3: }

4:

5: public void main(string args[]) {

6: chan<int> c;

7: par {

8: ...

9: f(c.read);

10: }

11: }

The declaration of the parameter in: chan<int>.read is a type, namely the reading channel

end of a channel carrying integer values. Similarly, the writing channel end type is obtained by the

.write postfix. To declare shared ends of a channel, we have three options: either both are shared,

only the reading end is shared, or only the writing end is shared. Examples of all three types of

declarations are shown in Listing 2.17.

Listing 2.17: Example of a channel’s reading end and writing end declaration.

1: shared chan<int> sharedReadWriteEnd;

2: shared read chan<int> sharedReadEnd;

3: shared write chan<int> sharedWriteEnd;

33

www.manaraa.com

Similarly, in the parameter list of a procedure declaration, we can specify how the ends of a

channel are shared. However, it should be pointed out that the use of the shared modifier only

applies to the end in question (Listing 2.18). The idea of sharing both ends of a channel makes

no sense, and since channels cannot be passed parameters, the ‘both ends shared’ option does not

apply for parameters.

Listing 2.18: Example of a channel’s ends in a parameter list.

1: public void f(shared chan<int>.read sharedReadEnd,

2: shared chan<int>.write sharedWriteEnd) {

3: ...

4: }

Channel Write Statement

A channel write statement is simply a write to a channel such us the one depicted in Listing 2.19.

Listing 2.19: Example of a channel write statement.

1: chan<int> c;

2: ...

3: c.write(42);

Line 3 writes the value 42 to the channel c. As a matter of fact, it writes 42 to the writing end of

the channel c. Therefore, the correct way to write line 3 (Listing 2.19) is as shown in Listing 2.20.

Listing 2.20: Correct way to declare a channel write statement.

3: c.write.write(42);

Where c.write is an expression that evaluates to the writing end of the channel c to which we

can then write 42 by calling write. Although the compiler allows both ways as the double ‘write’

seems redundant, the code shown in Listing 2.21 is perfectly legal.

34

www.manaraa.com

Listing 2.21: Example of channel’s writing end assignment.

1: chan<int> c;

2:

3: chan<int>.wrie cw = c.write;

4: cw.write(42);

2.2.4.5 Stop and Skip

The EBNF grammar for a stop and skip declaration is as shown in Grammar 2.5.

Grammar 2.5: Grammar for a stop and skip declaration.

stop → stop
skip → skip

stop and skip are two new keywords that most programmers may not be familiar with. In

ProcessJ, skip is a no-op operation (it does not do anything), and could mostly be replaced by a

semicolon (;) or an empty block ({ }). Contrary to skip, stop does exactly that (it stops), but does

not terminate. stop is equivalent to an infinite loop that never does anything (e.g., for (;;);).

2.2.4.6 Barrier

The EBNF grammar for a barrier declaration is as shown in Grammar 2.6.

Grammar 2.6: Grammar for a barrier declaration.

barrier → barrier

A barrier is a multi-way synchronization point between a number of processes. It can be passed

to procedures like any other primitive value. Additionally, a barrier can be enrolled on, synchro-

nized on, and temporarily resigned from (Listing 2.22). However, barriers cannot be sent over

channels, and they cannot be declared mobile.

35

www.manaraa.com

Listing 2.22: Example of the barrier construct.

1: barrier b;

2: ...

3: enroll(b) {

4: ...

5: };

6: ...

7: b.sync();

8: ...

9: b.resign() {

10: ...

11: };

When a process synchronizes on a barrier, it blocks until all other processes enrolled on the

barrier have synchronized as well. When the barrier has completed, that is, once all processes have

finally synchronized on it, all blocked processes are rescheduled for execution. Therefore, a barrier

can be used to synchronized multiple stages of computation between a set of parallel processes; for

example, we can guarantee that the computation of (say) variable b cannot proceed until another

process has computed its value of a.

To synchronized on a barrier, we use the sync keyword (Listing 2.22). It is important to

remember that no process can progress beyond a barrier synchronization until each barrier has

been enrolled on it. If one of the enrolled processes fails to call sync, it will prevent all other

processes from progressing in their execution. In addition, a process enrolled on a barrier may

terminate at any time without deadlocking the remaining enrolled processes. This is because a

terminating process automatically resigns from any barrier it is enrolled on.

2.2.4.7 Alternation

The EBNF grammar for an alt(ernation) declaration is as shown in Grammar 2.7.

36

www.manaraa.com

Grammar 2.7: Grammar for an alt(ernation) declaration.

alt statement → [pri] alt {
([(expression) &&] guard : statement)+
}

guard → left hand side = channel read expression
| skip
| timeout statement

To facilitate non-determinism in concurrent applications, ProcessJ supports alternations or alt

for short. An alternation consists of a number of branches referred to as cases. Each case is ac-

companied by a guard (Listing 2.23), which must be ready in order to be considered as a possible

alternative. The alternation executes exactly only one of these guards and the process which fol-

lows it. If no guard is ready, the alt statement is suspended until one (or more) guards become

ready. However, if more than one guard is ready, only one is chosen. Naturally, this model of

computation is explicitly non-deterministic as processes can be blocked waiting to send (if they

are guarded by the input from a channel) or receive on any number of channels.

Listing 2.23: Example of the alt construct.

1: alt {

2: x = c1.read(): { ... }

3: y = c2.read(): { ... }

4: t.timeout(500): { ... }

5: }

ProcessJ provides three types of guards: a skip guard, a timeout guard, and a channel read

guard. A process can therefore choose and have access to several different channels or other guard

types like timers. A skip guard is always ready, thus it can serve as a default option in an alt

statement. A timeout guard only commits to synchronization when the timer has expired, that is,

is ready if the amount of time given in the timeout has elapsed since the alt was evaluated the first

time. Note that a time on a timer continually increments and cannot change while waiting for a

37

www.manaraa.com

timeout. A channel read guard, on the other hand, is ready if and only if there is a committed

sending process at the other end of the channel and this process has not yet input its data.

The optional pri before the alt keyword adds a notion of priority. If we wish to prioritize a

selection process, we can use a prioritized alt. If more than one guard is ready, for example, the

first one listed is chosen and executes followed by the process it was guarding. In Listing 2.24,

when we introduced that skip guard, the skip can be chosen (at random) even if there is input

ready on the channel. If we wish to favor reading input from the channel over the skip, then we

use a pri alt. The guard that appears first has highest priority, the second one has second highest

priority and so on until the one that appears last, which has lowest priority. However, the statement

following the skip guard will execute by default if channel c is not ready to read.

Listing 2.24: Example of the pri alt construct.

1: pri alt {

2: x = c.read(): { ... }

3: skip: { ... }

4: }

2.2.4.8 Par

The EBNF grammar for a block declaration is as shown in Grammar 2.8.

Grammar 2.8: Grammar for a block declaration.

block → { (block statements)∗ }
par block → par [enroll ((expression)∗]) block

In ProcessJ, statements surrounded by a set of ‘{ }’ are, by default, executed in order from

top to bottom as their Java counterparts. A parallel block, on the other hand, is a normal block

with the par keyword before the opening ‘{’ character. Processes inside a par-block (like the

one in Listing 2.25) are safe to be schedule in any order (e.g., on a single-core processor) or in

parallel (e.g., on a multi-core processor), and can only influence each other by communicating

along dedicated point-to-point channels. As a consequence of this, a process cannot interfere with

38

www.manaraa.com

another process’s state, thus no data race hazard are possible. Naturally, if a process needs to

interact, then it must explicitly communicate.

Listing 2.25: Example of the par construct.

1: ...

2: par {

3: foo();

4: bar();

5: }

6: ...

A par-block in ProcessJ is similar to the one in occam-π. That is to say, it dynamically creates

and combines a number of processes to be executed in parallel. Furthermore, the order in which

these processes run does not matter, and as long as these processes continue to run in a par-block,

the process in which the par-block is executed will be blocked from running.

A par-block can also enroll its parallel processes on zero or more barriers. In Listing 2.26, the

par-block makes each statement a process and enrolls each of them on the barrier b and c. The

barriers on which all three processes are enrolled are passed as parameters. If we did not do that

and one of the processes, say foo, did not synchronized on the barrier it is enrolled on, then none

of the other processes enrolled on this barrier can progress beyond the synchronization point. Of

course, this could result in deadlock. However, if foo terminates, it will automatically resign from

the barrier to allow other processes to continue.

Listing 2.26: Example of the par enroll construct.

1: barrier b, c;

2: par enroll b, c {

3: foo(b, c);

4: bar(b, c);

5: baz(b, c);

6: }

7: ...

39

www.manaraa.com

2.2.4.9 Timer

The EBNF grammar for a timer and timeout declaration is as shown in Grammar 2.9.

Grammar 2.9: Grammar for a timer and timeout declaration.

timer → timer
timeout statement → ID . timeout (expression)

Timers are used to post an event after a predetermined amount of time and can be read much

like a channel (Listing 2.27). While regular channel reads are synchronous, that is, the sender and

the reader must both be ready to communicate (otherwise neither can progress and the process is

suspended), a timer read is always ready and can never cause a process to be suspended.

Listing 2.27: Example of the timer construct.

1: timer t;

2:

3: long time;

4:

5: time = t.read():

The second operation one can perform on a timer is a timeout as shown in Listing 2.28. In-

voking a timeout on a timer prevents the process from progressing until the specified amount of

time has passed. Timeout statements can also be used as guards in an alt statement. Like barriers,

timers cannot be communicated on channels, and they cannot be declared mobile.

Listing 2.28: Example of the timeout construct.

1: timer t;

2:

3: t.timeout(1000):

40

www.manaraa.com

2.2.4.10 Record

The EBNF grammar for a record declaration is as shown in Grammar 2.10.

Grammar 2.10: Grammar for a record declaration.

record type → modifier∗ record ID {
(type variable id (, type variable id)∗ ;)+
}

variable id → ID
variable id []

A record is similar to a struct in C as it consist of a number of fields with a specified type

(Listing 2.29), but without the semicolon at the end. However, in ProcessJ, a record can extend any

number of existing records.

Listing 2.29: Example of a record construct.

1: public record Client {

2: string firtstName;

3: string lastName;

4: string address;

6: string city;

7: int zip;

8: }

Records are dynamically allocated using the new keyword followed by a literal record (List-

ing 2.30), and their members can be accessed using the dot syntax.

41

www.manaraa.com

Listing 2.30: Example of how to create a record.

9: Client c = new Client {

10: firstName = "SomeName",

11: lastName = "SomeLastName",

12: address = "SomeAddress",

13: city = "SomeCity",

14: zip = 12345

15: }

Additionally, in ProcessJ, not only can we derive a record from a base record, we can also

derive a record from the derived record. This form of inheritance is known as multilevel inheritance

(Listing 2.31). Furthermore, if any of the extended records have similar field names, the compiler

will produce an error.

Listing 2.31: Example of a record inheritance in ProcessJ.

1: record A {

2: ...

3: }

4:

5: record B extends A {

6: ...

7: }

8:

9: record C extends B {

10: ...

11: }

2.2.4.11 Protocol

The EBNF grammar for a protocol declaration is as shown in Grammar 2.11.

42

www.manaraa.com

Grammar 2.11: Grammar for a protocol declaration.

protocol type → modifier∗ protocol ID [extends ID (, ID)∗]
(
{ (ID : { (type ID ;)∗ })∗ }
| ;
)

Protocols are similar to unions in C, except they are used to describe a structure for an indi-

vidual message transmitted (communicated) on a channel. A protocol in ProcessJ allows various

kind of information, containing possibly a mixture of data types, different data types, or different

amounts of the same data types based on a program’s runtime state, to be declared for individual

channels. It is a type that contains one or more elements indexed by a tag-name, where a tag-name

consists of a list of variables preceded by their data types, separated by semicolons, and enclosed

between braces (Listing 2.32).

Listing 2.32: Example of a protocol construct.

1: public protocol P {

2: request : { int number; double amount; }

3: reply : { boolean status; }

4: }

Along with specifying a number of possible tags for communication on a single channel, a

protocol can also extend any number of existing protocols. This enables programmers to implement

additional functionality that other protocol types can benefit from. In Listing 2.33, for example,

protocol P adopts a number of tag-named variables from protocols Q, R, and S. Note that while

multiple inheritance (as well as multilevel inheritance) is allowed in ProcessJ, the compiler will

also produce an error if any of the extended protocols have similar tags.

43

www.manaraa.com

Listing 2.33: Example of a protocol inheritance.

1: public protocol P extends Q, R, S {

2: request : { int number; double amount; }

3: reply : { boolean status; }

4: }

While the definition in line 1 in Listing 2.33 only describes what a P protocol will look like, it

does not itself describe a specific protocol containing values for a request or a reply (or for any

of the inherited tag-name variables). To do that, that is, to dynamically create a protocol of type P,

we must use the new keyword followed by a protocol literal (Listing 2.34).

Listing 2.34: Example of how to create a protocol.

5: P p = new P { request: number = 7, amount = 4.5 };

We can access the value (or values) associated with a protocol’s tag using the dot syntax. We

write the name of the variable whose value we want to retrieve immediately after the protocol’s

name, separated by a period (.), without any spaces. It should be pointed out that such value can

only be retrieved using a switch-case statement. We pass the protocol type as an expression in the

switch statement and only use the protocol’s tag excluding its type name as a label (Listing 2.35).

Listing 2.35: Example of how to access a protocol’s tag.

6: ...

7: switch (p) {

8: case request:

9: println("number: " + p.number + ", amount: " + p.amount);

10: break;
11: case reply:

12: println("status: " + p.status);

13: break;
14: }

15: ...

44

www.manaraa.com

2.2.4.12 Constant

The EBNF grammar for a constant declaration is as shown in Grammar 2.12.

Grammar 2.12: Grammar for a constant declaration.

constant declaration → modifier∗ type ID ;

A constant declaration at the top-level is similar to a local variable declaration with the const

modifier prefixed. For example, Listing 2.36 declares a public constant called PI.

Listing 2.36: Example of how to declare a constant variable.

1: public const double PI = 3.1415;

Top-level constants can only be declared of primitive types that are not barrier or timer types.

Note that the use of the modifier const for local variables or parameters simply means they cannot

be assigned, and they can be of any type

2.2.4.13 External

The EBNF grammar for an external declaration is as shown in Grammar 2.13.

Grammar 2.13: Grammar for an external declaration.

extern type → ID
| extern type . ID

An external declaration at the top-level is similar to a typedef in C, except it creates an alias

for an external Java type without having to qualify the access with the type name (Listing 2.37).

Listing 2.37: Example of an external type definition.

1: extern java.util.Hashtable javaHashtable;

45

www.manaraa.com

Consider the code snippet in Listing 2.38.

Listing 2.38: Example of an external type declaration.

4: public void foo(javaHashtable myHT) {

5: ...

6: int a = myHT.get(...);

7: }

Using the external type javaHashtable in Listing 2.38, we can have access to a collection of

key/value pairs, namely, a Java Hashtable which maps keys to values. Note that we can assign

values to this external type and pass it as a parameter between various ProcessJ processes.

46

www.manaraa.com

Chapter 3

Related Work

In this chapter I consider some of the existing approaches to concurrency and parallel program-

ming. In particular, I consider the most widely used models of concurrency. I describe the differ-

ence between them and what the advantages and disadvantages of each are.

3.1 occam-π

occam-π [23, 34, 42, 106, 108] is a programming language based on occam [69, 109] which was

a language designed specifically for parallel computing and for the Transputer microprocessor

chip in the 1980s [31, 61, 68] – a chip designed by Inmos International, a British semiconduc-

tor company founded in July 1978, for efficient on-chip (time-slice) concurrency and for channel

communication with other transputer chips. occam-π combines the concepts of CSP [63] with the

π-calculus [70, 71, 89] to support concurrency and facilitate the mobility1 and reconfigurability1

of network of processes. In addition, it has integrated semantics for concurrency, such as pro-

cesses and channels, and a number of features [24] that enable complex systems to be built while

preventing problems like race hazards, deadlocks, and livelocks.

After the death of the transputer, occam-π became a language that existed only for narrow

research purposes. Following the work that began at the university of Kent, numerous papers

have been written and published, and several CSP-inspired libraries and languages have been de-

veloped [105]; this includes CTJ [59, 60], JCSP [11, 103, 107], CCSP [72], C++CSP [7, 37],

1Process mobility is supported by the dynamic, asynchronous communication capability of the π-calculus.

47

www.manaraa.com

CHP [10, 36], PyCSP [102], Guppy [32], Go [26], and many others including, or shall we say cul-

minating on, ProcessJ. Although occam-π has been used extensively in the past, but much less so

today, it is all but a dead language. Unfortunately, it did not gain much popularity in the developer

community, perhaps, because of its foreign/old-fashioned syntax (e.g., keywords are all uppercase

letters), unfamiliar and forced indentation-based layout as part of its syntax (which was not popular

until the popularity of Python began to rise), limited I/O manipulation, and portability issues (it

only runs on 32-bit unix architecture, making it a rather restricted programming language). Addi-

tionally, it lacks APIs for certain common utilities [80]. For example, collection classes that are

often used or, in some cases, are only partially implemented in other programming languages, such

as a list, set, queue, etc., are not supported in occam-π.

Along with having secure but expensive communication when sending large data (on shared-

memory systems), there is no aliasing in occam-π [33, 105]. The creators sacrificed the ‘big-

picture’ in favor of safety, program correctness, and reducing the amount of mistakes that pro-

grammers make. While having restrict-like or no aliasing semantics in a programming language

prevents programmers from making mistakes, it also prevents full use of the language. In occam-π,

for example, programmers cannot build or implement several useful data structures to work with

large amounts of data, and therefore the entire data must always be copied – a sender and a receiver

hold separate copies of the data. Indeed, occam-π allows programmers to build massively struc-

tured concurrent programs that can be understood and implemented without difficulty, but could

we (really) do it without aliasing in this language? I believe that is not the case. Most program-

ming languages allow some kind of aliasing (e.g., two pointers set to point to the same variable

in C/C++), or at least go to great lengths to make it appear as if they were not (e.g., reference

variables in Java).

While it is widely accepted that aliasing is a dangerous feature to have in a programming lan-

guage, a language without it is simply not well-suited for real-world problem solving. To optimize

productivity, for example, we need different ways of organizing information on our computers.

Since data can have a significant impact on the performance and execution time of a program, it is

common for programmers to define data types to better represent and organize information so that

it can be efficiently used and accessed; this includes the implementation of an Abstract Data Type

(ADT) for elementary data structures such as lists, trees, stacks, and queues. Without aliasing, this

48

www.manaraa.com

is almost impossible to accomplish.

In spite of everything, occam-π has been artificially kept alive in some institutions, including

UNLV, as it continues to serve as a learning tool for concurrent programming in computer science

graduate level courses. A snippet of occam-π code can be seen in Listing 3.1.

Listing 3.1: Example of occam-π code.

1: PROC integrate(CHAN INT in?, out!)

2: INT total:

3: SEQ

4: total := 0

5: WHILE TRUE

6: INT x:

7: SEQ

8: in ? x

9: total := total + x

10: out ! total

11: :

3.2 Java Threads

To support concurrent programming, the Java Virtual Machine (JVM) allows threads to run simul-

taneously within a program in a way where each thread can handle a different task at the same time.

A thread in Java is a lightweight process that shares the same memory and cooperatively shares

the resources of the process in which it is created [92]. Java uses the monitor mechanism [62] to

ensure that threads are not executing blocks of code marked synchronized at the same time; this in-

cludes methods with the synchronized keyword and blocks followings the synchronized keyword.

Furthermore, condition (synchronized) variables are used to properly manage thread-coordination

and execution.

Every Java object and class is associated with a monitor and has one built-in lock by default.

This lock is used to determine which thread controls the state of an object inside a monitor. A

monitor is therefore a mechanism, influenced by the critical region concept [55], used to encap-

sulate data that cannot be accessed or referenced from outside of the monitor. This means that

a monitor protects the data of an object from unstructured access, and it further ensures that the

49

www.manaraa.com

interaction between threads takes place in legitimate ways when data is accessed using the object’s

methods. Ignoring, for now, some serious traps related to sequential programming with objects, a

monitor, supposedly, guarantees the following: that 1) a thread can have access to shared data after

acquiring a lock of an object, and that 2) threads can communicate through shared data without

interfering with each other.

Monitors, however, break the object oriented model for which Java was built. Since a monitor

is not a class, there is no actual monitor object – at least not explicitly. A monitor is instead an

instance of any class that has synchronized code in it2. Therefore, we cannot create or work directly

with a monitor. The JVM provides monitorenter and monitorexit instructions which execute actions

to lock and to unlock a monitor on an object (see Listing 3.2 and Appendix C for complete code).

Further still, the Java synchronized statement creates these instructions so that multiple threads can

coordinate access to an object. Because of this low-level synchronization mechanism, threads are

controlled by calling functions inside a monitor and depend on notifications from other threads.

Programmers are therefore likely to introduce bugs in their programs if they forget to use the

synchronized modifier, wrongly evaluate guard actions, or have access to the data of some object

via hidden references even when this data is kept in a private field.

Listing 3.2: Example of generated monitorenter and monitorexit bytecode instructions.

18: public void f();

19: Code:

20: 0: aload_0

21: 1: getfield #3 // Field lock:Ljava/lang/Object;

22: 4: dup

23: 5: astore_1

24: 6: monitorenter

25: 7: aload_1

26: 8: monitorexit

27: 9: goto 17

28: 12: ...

The latter is an alarming issue that, when writing single-threaded programs, many programmers

(including myself) often overlook. As described by Welch [104], in Java, a method call made on

2Recall that to synchronize code, or a section of it, we must use the keyword synchronized.

50

www.manaraa.com

an instance of a class can lead to unintended consequences. Since objects are passive, a method

invocation on an object is not executed by the object itself; instead, it is executed by the caller

thread. Furthermore, methods can be invoked from inside the body of other methods. If more than

one thread of control contains a reference to the same object, they can all invoke methods at the

same time, and thus putting the object in an inconsistent state. Since nothing stops passing the

reference of an object as a parameter to another object (depicted in Figure 3.1), objects are at the

mercy of any other object that has a reference to it. An example of threads executing in and out of

objects can be seen in Appendix E.

Figure 3.1: Spaghetti trails of threads of execution.

While synchronization is part of the Java language, multi-threaded and well-synchronized ap-

plications are often difficult to write due to the low-level abstraction required by monitors. The

complexity and the risks associated with multi-threaded Java programming are describe in [52] as

follows:

• Safety Hazards

Proper synchronization is required to prevent race conditions. Resource conflicts may occur

if different threads have unorganized access to the same object’s synchronized block. When

this happens, threads can simultaneously corrupt the object at the same time and produce

different computational results.

51

www.manaraa.com

• Liveness Hazards

Java does not provide the means of detecting liveness failure such as livelock, deadlock, and

starvation situations. Therefore, programs that require locks on multiple objects must use

conventional techniques, such as locks, mutexes and semaphores, to avoid problems of this

nature.

• Performance Hazards

The system can fail because of excessive memory consumption when creating too many

threads on the JVM. In addition, if more threads than CPUs exists, the JVM may regularly

switch from running one thread to running another one. Naturally, the scheduler will have to

suspend the running thread so that another thread can run, which means more time may be

spent changing the context of threads than executing the program.

Even though Java provides support for parallel computing, it is almost never recommended

to use an object (using the synchronized keyword) as a locking mechanism [74]. It is a common

misunderstanding to believe that simply owning the lock of an object prevents other threads from

accessing that object – that is not the case! In order to properly plan parallel operations, special

care should be taken to avoid data race hazards, deadlocks, livelock, and starvation. Unfortunately,

managing these problems requires some extra effort – but the resulting code is far less reliable and

harder to maintain.

3.3 Communicating Sequential Processes for Java (JCSP)

Communicating Sequential Processes for Java (JCSP) [11, 103, 107] is a library of CSP constructs

which provides the necessary tools for writing concurrent systems in Java via message passing.

This library is based on the union of Hoare’s CSP model of concurrency [63] and Milner’s π-

calculus [70, 71, 89], and follows many of the occam-π [23, 34, 106] principles to support mobility

of channels. JCSP accomplishes concurrency by encapsulating the implementation details (using

primitives, extension, and wrappers) to support CSP elements such as channels, processes and

various other operators. The advantages of using this library are that it hides the complexity of

monitor synchronization, prevents race hazards, and gives Java programmers a more convenient

parallel computing model.

52

www.manaraa.com

While JCSP enables programmers to write process-oriented programs in Java, it maps pro-

cesses directly to the JVM threading mechanism. For example, in Listing 3.3, when a JCSP pro-

cess (a class that extends the JCSP class CSProcess) is created and executed in a par-block (which

in JCSP is the Parallel class – another class that is part of the JCSP library), it is executed in a

Java thread. This indicates that JCSP processes have similar process memory and runtime over-

head as threads [82]. The reason is that the JCSP library is built on top of the standard Java Thread

mechanism, thus it carries the overhead involved with Java threads.

In general, the JVM does not support hundreds of thousands (or millions) of threads. Since

hardware configurations limit the number of threads that the JVM can maintain, the number of

processes that JCSP can create is therefore determined by the amount of memory available on the

system. Further still, other experiments [87] with JCSP determined that the maximum number of

JCSP threads in one JVM is in the tens of thousands. Naturally, with JCSP, the number of processes

required for a large and complex parallel model such as the one described in [1, 93, 100] is simply

impossible.

Listing 3.3: Example of a JCSP process.

1: public class Example implements CSProcess {

2: public void run() {

3: One2OneChannel chan = new One2OneChannel();

4: new Parallel (

5: new CSProcess[] {

6: new SendProcess(chan),

7: new ReadProcess(chan)

8: }

9:).run();

10: }

11: }

As mentioned, creating too many threads causes performance overhead. If the CPU needs

to switch between threads, the running thread must be suspended and its register values must be

saved in memory before the thread is loaded back to resume. Every time we deliberately change

the status of a thread (e.g., by sleeping, waiting on an object, changing its priority, etc. – which

JCSP implicitly does for proper thread synchronization), we will introduce a context switch. While

53

www.manaraa.com

we may notice a boost in performance at the beginning, at some threshold, the number of context

switches will impact the overall performance of our program, making processing slower. As a

result of this, JCSP becomes unusable for all practical purposes when working with a large network

of processes in a single JVM. Mapping JCSP processes to threads is not a viable solution for

process-oriented programming in Java.

3.4 Message Passing Interface (MPI)

The Message Passing Interface (MPI) [20, 53] is an industrial standard based on the consensus

of the MPI Forum that specifies library routines for programming parallel systems. The MPI li-

brary’s foundation is based on the different functions used to transmit data that requires cooperation

between a sender and a receiver. MPI focuses primarily on communication routines to support con-

current programming. Through the use of well-defined subroutines, it enables users to control data

transition between processes in order to achieve parallelism. It is currently the most popular mes-

sage passing parallel computing tool used on largely parallel machines with distributed-memory

architectures.

MPI has a collaborative execution model. Processes work together to solve a single problem

but they operate separately from each other. Because of this, each process has its own memory and

cannot exchange information in memory variables. Since no shared memory exists, local calcu-

lations must be performed and explicit communication must be used to send data back and forth

between processes. Consequently, the user has to divide the data between processes – with most of

the processes working on subtasks and a few others (often just one process referred to as ‘the mas-

ter’) managing these tasks (Figure 3.2), think about the actual message passing infrastructure to

effectively divide the work between processes, and use a number of MPI communication routines

to transfer data where necessary. The most common basic routines are shown in Listing 3.4.

54

www.manaraa.com

Listing 3.4: MPI common basic routines.

1: // Used to send a message to another process

2: MPI_Send(buf, sizeof(buf), MPI_CHAR, 1, 0, MPI_COMM_WORLD);

3:

4: // Used to receive a message from another process

5: MPI_Recv(buf, sizeof(buf), MPI_CHAR, other_rank,0,

6: MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Figure 3.2: MPI’s master and slaves processes.

Listing 3.5: Example of an MPI program.

1: main(int argc, char *argv[]) {

2: ...

5: MPI_Init(&argc, &argv);

6: MPI_Comm_rank(..., &rank);

7: if (rank == 0) {

8: master();

9: } else {

10: slave();

11: }

12: ...

15: MPI_Finalize();

16: ...

17: }

Sequential-to-parallel transformation using MPI requires a great deal of effort. One reason for

this is that communication tends to be more expensive than local operations. This is because of the

55

www.manaraa.com

extra overhead of functions calls in point-to-point and collective communication, which eliminates

some of the benefits of using the MPI library [54] (e.g., modularity, composability, and complete-

ness). To solve this problem, we must minimize the number of messages exchanged and maximize

the workload of each process to improve performance. The programmer is therefore responsible

for correctly implementing parallel algorithms using MPI constructs. As a consequence, it is easy

to write code that performs and scales poorly because data must be explicitly distributed with load

balancing in mind. Of course, this is often difficult to achieve.

Safety issues are another reason that make MPI difficult to use. The MPI standard guaran-

tees that a message is sent and receive without conflicts and corruptions, but it does not guarantee

fairness when sending and receiving messages from any source. This, of course, does not reduce

synchronization or other code errors. The programmer is therefore responsible for correctly iden-

tifying parallelism when implementing MPI routines. The lack of compiler optimization for MPI

calls is another issue. Even if tools such as the ones mentioned in [40, 56] can be used to improve

the communication and computation overlap in MPI applications with minimal (and almost no)

user interference, they cannot be used in practice as they are still under development. As a final

remark, there are still a number of open problems in MPI [101] (e.g., performance, scalability, fault

tolerance, support for debugging, topology, etc.) that must be addressed and improved for the new

developments in parallel systems.

3.5 Open Multi-Processing (OpenMP)

Open Multi-Processing (OpenMP) [39] is an API that consists of compiler directives and library

routines for programming shared memory applications that extend C/C++ and FORTRAN. It en-

ables programmers to explicitly instruct the compiler which loop iterations should be performed

in parallel, how to combine the results of these iterations to create a single outcome, and what data

should be treated as shared or private in each loop iteration.

Contrary to MPI’s execution model, OpenMP’s model is based on forks and joins [16]. An

application is broken into a group of threads that run on a shared memory architecture. The ap-

plication initially runs sequentially with only one thread (the master thread) until a parallel region

of code in the program is reached. In this region, OpenMP creates (fork) a number of worker

56

www.manaraa.com

threads that run concurrently with the master thread. When the worker threads are done executing

the statements inside the parallel region, OpenMP synchronizes (join) the data of these threads and

terminates them, leaving only the master thread to continue until the next parallel region is reached.

Figure 3.3 shows the fork and join sections created after using the omp for construct [25] (List-

ing 3.6). The #pragma omp parallel for divides the for loop into n number of tasks that are

shared among threads.

Listing 3.6: Example of a simple parallel loop in OpenMP.

1: void simple(int n, float ∗a, float ∗b) {

2: int i; // i is private by default

3: # pragma omp parallel for
4: for (i = 1; i < n; i++)

5: b[i] = (a[i] + a[i-1]) / 2.0;

6: }

Figure 3.3: Example of how to create threads in OpenMP.

Although OpenMP is easy to use and requires little programming effort, [96, 97] describe the

disadvantages of using it when developing distributed applications. Scalability is limited by the

57

www.manaraa.com

architecture of the memory. Since OpenMP runs on shared memory systems, there is a limited

number of processors to be used. Consequently, sufficient work must be done in each parallel loop

to avoid extra overhead. Like MPI, OpenMP can be difficult to use because it requires explicit

synchronization. This means the programmer is responsible for the correct synchronization of

threads which can make the implementation of a program as complicated as using MPI routines.

When work is distributed among parallel threads, for example, a program can produce wrong

results if the data on one thread depends on the data on another. If task (say) a relies on the

completion of task b, we need to guarantee the completion of task b before invoking the execution

of task a. If threads do not bring some order to the sequence in which they do things, the outcome

will be disastrous.

It is also the responsibility of the programmer to ensure that data dependency is excluded.

Problems arise when a variable that is used (read from) and updated (written to) is declared as a

shared variable in a parallel region. The compiler is not smart enough to rule out data dependency

when the parallel directive is placed around a section of code. Naturally, multiple threads can

attempt to write to the same shared variable simultaneously. Since threads use the same memory,

precautions must be taken to correctly manage multiple tasks involving access to shared resources.

Lastly, OpenMP threads are not particularly notable for handling fine grain data parallelism as they

require more communication and computing efforts. This typically results in load imbalance when

certain threads waste (a great amount of) time between synchronization points; for example, time

wasted for waiting to enter critical regions, or when they have unequal amount of workload.

3.6 Hybrid Approach (MPI/OpenMP)

An MPI process has a single thread of execution, however, the addition of threads to MPI programs

(Listing 3.7) gives programmers the ability to execute multiple threads simultaneously within a

single MPI process. Programmers can therefore take advantage of MPI’s data placement policies

and OpenMP’s fine grain parallelism [96, 97] to reduce communication requirements, memory

consumption, and improve load balance. In a multi-core processor machine, for example, we

could have each processor run an MPI process, and, at the same time, have each MPI process

execute a set of threads equal to the number of processor in this machine (Figure 3.4).

58

www.manaraa.com

Figure 3.4: Hybrid approach example with OpenMP and MPI.

Listing 3.7: Example of a hybrid program with OpenMP and MPI.

1: main(int argc, char *argv[]) {

2: ...

5: MPI_Init(&argc, &argv);

6: ... // master thread

9: # pragma omp parallel

10: {

11: ... // group of threads

14: }

15: ... // master thread

18: MPI_Finalize();

19: ...

22: }

As described in [83], with this hybrid programming approach, we are able to have the follow-

ing: better support for load balance when having a mix of static and dynamic scheduling (now that

we have threads within a process, we can take advantage of OpenMP to make full use of other com-

putational resources), lower overhead when using threads (the creation and placement of threads

59

www.manaraa.com

can reduced communication overhead in MPI applications), good usage of resources in shared

memory systems (the amount of replicated data is reduced significantly because there are fewer

larger blocks managed with OpenMP, thus there will be fewer MPI messages with larger message

sizes), and no extra overhead among MPI processes (the number of processes is also significantly

less, resulting in less communication among processes and increased performance).

Note that whether or not a mixed OpenMP/MPI programming approach performs better than

pure MPI depends on the number of messages exchanged between processes, and the number of

threads and the amount of work done by each thread. Often, the number of threads per MPI pro-

cess required by any application is difficult to predict without initially creating some performance

degradation. Such number can depend on the application itself, the input data, the hardware plat-

form, the number of processes being used, the compiler and the MPI library implementation [22].

Naturally, to determine the correct (or optimal) number of threads, thorough benchmark test must

be done. This indicates that the best combination of MPI tasks and threads should be determined

by experimentation in order to achieve good performance.

Furthermore, threads can become a major source of overhead [22]. When there is communi-

cation among threads of different MPI processes, if a thread involved in an MPI communication

becomes idle, then no progress will be made until the thread becomes active again. Similarly, if

all threads are idle except for one while an MPI communication is in place. Additionally, if the

program is not thread safe, multiple threads can engage in the same MPI communications at the

same time. Since multiple threads have access to shared MPI communications, each MPI call must

be protected to guarantee correct input and output data. This adds a lot of overhead due to the fre-

quent overlap of threads and processes in collective communication and computation operations.

Therefore, making MPI calls within OpenMP blocks is not always safe and limits performance.

3.7 Actor Model

The actor model [57, 58] was first introduced by Hewitt in 1973. A mathematical definition was

subsequently presented for the behavior of an actor system by Agha [29]. Since then, this model

has been incorporated into many languages (or as libraries in languages that do not have actors

built-in), Erlang [13, 30] being one of the most popular. The actor model is a paradigm that defines

60

www.manaraa.com

some basic rules for how components in a system should behave and interact with each other via

message passing. An actor is an entity (an active object3 [76]) that has a mailbox to store messages

and a behavior that changes depending on which message it receives (Figure 3.5). It can send other

actors a number of messages, create a number of actors, and determine how to respond to the next

message it receives. Such actions are conducted in any order and could be performed in parallel.

Figure 3.5: Actor model example.

An actor does not share its data and only communicates with other actors to which it is con-

nected by sending asynchronous messages. This means we can write a program consisting of

simple sequential processes and avoid a lot of problems resulting from sharing state. Naturally,

since there is no shared state between actors, it is only possible to manipulate their internal states

through messages. For example, if an actor wishes to obtain information about another actors inter-

nal state, it will have to send a message to request this information. In addition, an actor processes

its messages one at time, in the order that it receives them, and uses pattern matching4 to determine

3Active objects are a form of multitasking for computer systems. They manipulate their own execution thread

instead of using the execution thread of the object that created them. Therefore, they can be used to develop parallel

applications.

4Pattern matching is nothing more than the action taken in response to the message being processed.

61

www.manaraa.com

what to do with each message.

While the actor model enables a system to be decomposed into independent and autonomous

components that work asynchronously, it has some disadvantages as described in [28]. There is

no notion of inheritance or general hierarchy, which means that an actor based implementation

can be time consuming and confusing to program. For example, ‘over-decomposing’ applications

into actors with common behavior (e.g., spreading out similar logic in different places) may be

more unreadable than code that uses threads and blocking request. Another issue is the ability

of actors to create other actors. Sometimes creating (an excessive number of) actors can have a

dramatic impact on the responsiveness of a system. In order to avoid this, the system will need to

know which actor is executing and where, thus a number of records containing this information is

required. This may result in performance penalties, particularly, in highly distributed systems.

Another disadvantage of using the actor model is the asynchronous message passing. The

ordering of messages received form multiple actors may be inconsistent in larger systems (e.g.,

fine/coarse grain) causing problems with certain programs and/or algorithms. For example, in a

stack-like structure, push and pop operations may not necessarily be executed in the correct order

because a message containing a push operation could be overtaken by a message containing a pop

operation and vice versa.

Finally, nothing prevents actors from sharing their state. When using the akka [3] framework in

Java, for example, actors can have shared, mutable (changeable), state. Consider the actor example

in [2] with some state (Listing 3.8), a HashMap that supposedly contains information it needs in

order to function. We can accidentally leak a reference to a mutable data (the mutable HashMap in

this case) when sending a GetState message to the sender requesting the status. If two different

actors, at any given point in time, (accidentally) obtain a reference to this map, they can both read

and write to it at the same time on another thread. Naturally, when sharing mutable state between

actors, there is no guarantee that an actor will not concurrently try to modify the state of another

actor.

62

www.manaraa.com

Listing 3.8: Example of an actor model with shared mutable state.

1: public class BadActor extends AbstractLoggingActor {

2: private Map<String, String> stateCache =

3: new HashMap<String, String>();

4: public BadActor() {

5: receive(

6: ReceiveBuilder.match(GetState.class, request -> {

7: sender().tell(new State(stateCache), self());

8: }).build()

9:);

10: }

11:

12: public static final class GetState {

13: public static final GetState Instance = new GetState();

14: private GetState() { }

15: }

16:

17: public static final class State {

18: private final Map<String, String> state;

19: public State(Map<String, String> state) {

20: this.state = state;

21: }

22: public Map<String, String> getState() {

23: return state;

24: }

25: @Override

26: public boolean equals(Object o) { ... }

27: @Override

28: public int hashCode() { ... }

29: }

30: }

63

www.manaraa.com

Chapter 4

Command Line Interpreter (CLI)

A command line interpreter enables a rudimentary type of interaction between users and applica-

tion programs by means of entering commands to a computer. This interaction relies on textual

input and output in which characters are displayed in a terminal program that accepts various

arguments as input on the command line. These arguments are often referred to as parameters,

commands, or options (a series of instructions that a program executes) and are typically typed

in by the user. In addition, each command line consists of one specific command word usually

followed by optional arguments used by the command. The general form of a command in [84]

looks like this:

command arg0 arg1 . . .argn

Where command is the name of a program and arg0 . . .argn are individual values passed to

the program. To run commands on a terminal, for example, the user types them in the command

line, presses the ‘return’/‘enter’ key, and then waits for a response. After receiving the line typed

by the user, the command line interpreter splits the argument into separate strings, processes the

strings one by one, executes them as requested, and displays output (if any) before giving another

prompt. Consequently, a command line interpreter has a straightforward functionality; it allows

users to respond to visual prompts by typing commands on a terminal program and, in a similar

way, allows them to receive feedback. Figure 4.1 shows the parts of a typical command line in a

UNIX environment separated by white spaces.

Although the syntax of a command line can vary from one operating system to another, the

64

www.manaraa.com

Figure 4.1: Parts of a command line.

command line illustrated in Figure 4.1 consist of three common types of components. These

components describe the role of each argument on the above command line as follows:

• Command

The name of an executable program that may be followed by a list of arguments. A command

does not begin with a single or double dash, and it is not associated with an option; therefore,

it does not need an option in order to be run.

• Options

A word that mostly starts with ‘–’ or ‘– –’ and can take arguments. When an option is

defined as a ‘named argument’, the option behaves as a key-value argument pair where its

key identifies its value. However, when used as a ‘stand-alone flag’, the option behaves as a

Boolean value. That is, its value can be set to true after passing the option to a command.

• Positional arguments

Any word that is not commonly prefix with ‘–’ or ‘– –’, and its position in a list of arguments

is determined on the command line. Note, a positional argument may follow the above

convention of options if it appears after the ‘– –’ (also known as the bare double dash) which

means the end of options.

• Special characters

Although not present in Figure 4.1, these are symbols of particular significance beyond their

literal meaning in the command line. Some well-known examples are the ‘<’ symbol for

65

www.manaraa.com

input redirection, the ‘>’ symbol for output redirection, and the ‘;’ symbol for putting two

or more commands on the same line.

A large number of programs have conformed to the UNIX standard convention for naming and

processing commands, options, and parameters. However, many still do not follow this standard.

Some programs do not require that options start with ‘–’ or ‘– –’; the Windows’ command line

interpreter, for example, requires that options start with ‘/’ and be case sensitive. Other programs

do not allow multi-options or group of options. Instead, these programs require that options be

separated by white space characters and start with ‘–’ or ‘– –’. For ProcessJ, we decided to follow

the structure of the UNIX command line in the way most compilers interpret commands but added

some small variations. Section 4.1.2 has a summery of the syntax rules that ProcessJ obeys when

specifying command line arguments on the command prompt, and for defining commands for the

compiler.

4.1 Overview

The ProcessJ command line interpreter is a lightweight command line parsing library that makes

writing command line tools for the ProcessJ compiler simple and easy while allowing quick cus-

tomization when required. The main purpose of the command line interpreter is to improve the

parsing of command line arguments, provide good-readable error messages, support a variety of

use cases, provide auto-completion for invalid commands, and automatically generate a command

usage text from the set of options and parameters defined for the ProcessJ compiler.

This section discuses the implementation and nature of ProcessJ’s command line interpreter

including: the reason for building the command line parsing library; what the command line inter-

preter can do; how to define commands, options, and parameters; and how to parse command line

arguments.

4.1.1 Designing the Library

Command line parsing tools can be as simple or as complex as programmers want. While there

are a lot of command line parsing libraries available in Java such as args4j [5], JOpt Simple [18],

CLAJR [8], JArgs [17], JSAP [19], and several others, none of them fit well with what we needed.

66

www.manaraa.com

For the design of the command line interpreter, we only had two choices. We could use one of

the available libraries to build a command line tool that parses options into temporary variables,

be it local or global, and provides adequate access to them. Or, design a command line interpreter

that follows a specific set of command line syntax rules based on the existing implementation of

the ProcessJ compiler. The main advantage that let us to pursue the design of the command line

interpreter was the ability to reuse our existing compiler code. We wanted our command line

interpreter to be simple, typed safe, and capable of parsing complex arguments. For this reason,

we chose the second approach in order to achieve simplicity, type safety, and capability.

Without going into much background detail, the following observations are made about two ex-

perimental versions of ProcessJ. One of the earliest experimental version of ProcessJ used Apache

Commons CLI [9] for parsing command line options passed to the compiler. However, a newer

recent version of ProcessJ uses a simple for-loop to parser command line arguments passed to the

main() method. Before considering the reasons for building the command line interpreter, I will

briefly cover the parsing methods implemented in both versions in the two sections below.

Parsing Command Line Arguments using Apache Commons CLI

With the Apache API, [98] describes the command line arguments of ProcessJ as shown in List-

ing 4.1.

Listing 4.1: Apache Commons CLI command line declaration.

1: final Options options = new Options();

2: final OptionGroup targetLanguages = new OptionGroup();

3: targetLanguages.addOption(new Option("m", "mpi", false,
4: "compiler to c and use mpi"));

5: targetLanguages.addOption(new Option("j", "java", false,
6: "compile to java"));

7: options.addOptionGroup(targetLanguages);

Apache Commons CLI provides a mechanism (a set of class) that can parse command line

arguments containing optional arguments, arguments with parameters, and short/long arguments.

Although simple to use, once the command line arguments are parsed, a sequence of cascading

if-else statements – which [9] calls ‘the interrogation stage’ – is required in order to determine if

67

www.manaraa.com

an option’s distinct flag is present. As illustrated in Listing 4.2, the execution begins with the first

if-else statement (the most-top one) and continues to several levels.

Listing 4.2: Apache Commons CLI’s interrogation stage.

1: ...

2: final boolean hasJava = commandLine.hasOption("java");

3: final boolean hasMPI = commandLine.hasOption("mpi");

4: ...

5: if (hasJava) {

6: // do something

7: } else if (hasMPI) {

8: // do something

9: } else if (....) { ... }

10: ...

We can clearly see that we have to extract the value of each option to avoid having to call the

hasOption(. . .) method regularly in the expression of an if-else statement. We can also see that our

validation checks get cluttered with similar conditions appearing in multiple branches. In addition,

depending on the application, we may need to move early-exit code as close to the top as possible

so that these if-else statement cases can be ignored and never be executed by accident. Generally

speaking, we have to unnecessarily include the same section of code in many places with little or

no alteration.

Another problem when using this library to parse arguments is that options within one group

are not mutually exclusive by default. This means that all options, be it required or not, must be

specified on the command line. If one of the options is missing, the parser will throw an error.

To avoid this, we could define two sets of options and parse the command line twice. The first

set of options would contain options that come before the required group, and the second set

would contain the remaining required options. While there are other temporary solutions to this

problem, the workarounds typically contain very complicated code. Therefore, despite being the

most widely used command line parsing library, Apache Commons CLI is not a perfect solution.

68

www.manaraa.com

Parsing Command Line Arguments Using a For-loop

The implementation of a for-loop in [95] is far from being a better solution. The piece of code

in Listing 4.3 shows how command line arguments are processed and parsed out of the argument

array of the main() method.

69

www.manaraa.com

Listing 4.3: Parsing command line arguments using a for loop.

1: ...

2: for (int i = 0; i < argv.length; i++) {

4: ...

5: try {

6: if (argv[i].equals("-")) { // single option

7: s = new Scanner(System.in);

8: } else if (argv[i].equals("-I")) { // optional flag

9: if (argv[i+1].charAt(argv[i+1].length()-1) == ’/’)

10: argv[i+1] = argv[i+1].substring(0, argv[i+1].length()-1);

11: Settings.includeDir = argv[i+1];

12: i++;

13: continue;
14: } else if (argv[i].equals("-t")) { // option takes arguments

15: if (argv[i+1].equals("c") | | argv[i+1].equals("JVM") | |
argv[i+1].equals("js")) {

16: Settings.targetLanguage = argv[i+1];

17: i++;

18: continue;
19: } else {

20: System.out.println("Unknown target option for -t");

21: System.exit(1);

22: }

23: } else if (argv[i].equals("-help")) { //optional flag

24: usage();

25: System.exit(1);

26: continue;
27: } else if (argv[i].equals("-sts")) { // optional flag

28: sts = true;
29: continue;
30: } else {

31: Error.setFileName(argv[i]);

32: Error.setPackageName(argv[i]);

33: s = new Scanner(new java.io.FileReader(argv[i]));

34: }

35: p = new parser(s);

36: } catch (java.io.FileNotFoundException e) {

37: ...

39: }

42: ...

42: }

70

www.manaraa.com

Even though the above piece of code is reasonably short and reasonably easy to implement, it

raises a number of questions.

• Is "-I" in line 8 an option or an argument?

• What is the option’s name? What does "-I" mean?

• What is the type of "-I"? Is it an integer, double, string, etc.?

• Is "-I" a required option?

• If "-I" is an option, does it required an argument?

– If "-I" does not required an argument, then

∗ Does it have a default value?

∗ Is there an environment variable that provides this value?

• Can "-I" appear only once? Or, can it appear multiple times?

Once the command line arguments are made available in the code, the for-loop handles all

of the arguments, one by one, as follows: it parses each argument, checks if the syntax used is

valid and supported, and then retrieves the value required (if any) for each specified option before

running the code according to the input provided by the user. Although this for-loop is great

for handling simple arguments, but as is often the case, some arguments are options that have their

own arguments. In this situation, the options and their arguments need to be processed together. Of

course, this requires using another loop to parse an option with its own argument. Unfortunately, a

for-loop makes it impossible to customize a program without having to rewrite (almost the entire)

code. It should therefore be clear that using a for-loop to parse command line arguments is not the

best approach.

4.1.1.1 Simplicity

Unlike many other libraries of this kind, ProcessJ’s command line interpreter uses Java’s runtime

reflection and annotation capabilities to make the parsing and manipulation of command line argu-

ments trivial with minimal syntax and no external dependencies. In the simplest form, for example,

71

www.manaraa.com

to instruct a program on how to process user input, we annotate a class and its fields with descrip-

tions of our options and parameters. The compiler then processes these annotations at runtime and

updates the fields of our target class via reflection. This makes the instance of our class very easy

to configure and control with a variety of applications. In addition, the command line interpreter

makes the binding of different types of arguments to options and parameters effortless through

default type converters, simplifies the support for most built-in data types available in Java, encap-

sulates default settings which can be modified and used in the program, and does most of the basic

correctness checking for the compiler.

4.1.1.2 Type Safety

There is no need to know or remember the type of argument we want to parse when using Java’s

built-in data types such as byte (or Byte), short (or Short), char (or Character), int (or Integer),

long (or Long), float (or Float), double (or Double), String, and enum data type, or when using

parameterized fields1 with primitive data types. ProcessJ’s command line interpreter will infer

the above-mentioned types at compile time. However, we must explicitly specify some way of

handling complex types (such as files, list, arrays, and maps) and user-defined types (those that

programmers defined themselves) other than the above built-in ones. This type safety results in

writing clean code while providing a strong type system that not only prevents the creation of

abstract types but also enforces the use of basic Java constructs and data types. Table 4.2 in

Section 4.1.3.4 shows in detailed the list of data types supported by the command line interpreter.

4.1.1.3 Capability

In ProcessJ, we can instruct the parser on where to find the input data and how to match this data

against a command, an option, or a parameter. This is possible due to the following seven features:

• Multiple option names

Options can be given various names, or aliases, in the form of a list. Naturally, one of these

names can be used to specify the option as it should be entered on the command line.

1A Java generic field declaration has a type parameter delimited by angular brackets (< and >).

72

www.manaraa.com

• Multiple option values

Options may be followed by one or several values (in any order) if they can occur multiple

times. For example, the option -f, in most programs, is often followed by one or more input

files that are typically accessed in the order in which they are given.

• Type converters

A type converter can be used to translate a string literal value into some typed value. That

is, a value of the appropriate data type.

• Group of options

Options can be grouped into a single command, after which each option can be processed

independently and then executed in the program.

• Range specification checking

A range can be used to specify an exact number of values, or a minimum and maximum

number of values required by an option or parameter.

• Custom error handling

This includes how to handle errors (exceptions) that occur while processing arguments from

the command line, and how to provide additional information about the cause of these errors.

• Reading commands from a file

Options and arguments can be supplied to the compiler over a text file. This reduces the

limitation on the number of arguments that can be passed to the compiler on the command

line.

• Command auto-completion

This feature displays a full command name or a list of command suggestions after we press

the ‘return’/‘enter’ key and the word entered was not what we intended by the abbreviation.

The parser makes use of the Levenshtein edit distance [65] to quantify the difference between

two strings. Therefore, it will recognize a command once we have entered enough characters

to make the command unique.

73

www.manaraa.com

All this improves consistency when dealing with different forms of command line arguments.

Additionally, the command line interpreter generates a self-describing message (a man-page-like

documentation) and a command usage text based upon defined commands, options, and parame-

ters. For example, the ProcessJ compiler provides an option -help that shows a summary of all the

options and parameters that the compiler understands. This is useful for displaying a typical usage

guide with four sections: header, description, option list, and footer. The compiler also provides

an option -error-code that takes an error code number2 and displays information in response to

compile time and runtime errors. This helps identify the cause of the problem in the source code

and helps understand the severity levels of error and warning messages produced by the compiler,

such as ERROR, WARN, INFO, etc.

4.1.2 Command Line Syntax Rules

In ProcessJ, a command consists of five patterns each listed with various elements:

• command -option <argument>

• command -option=<argument>

• command [-option-A|-or-option-B]

• command [<optional-argument>]

• command <argument>

These constructs (a combination of commands, options, and positional arguments) and ele-

ments (words delimited by white space characters or either one of these: =, [], <>, and |), together,

form and describe valid patterns for executing commands on the command prompt. Table 4.1 de-

scribes the notations used above.

The following is a summary of the syntax rules that we use for parsing arguments, and build-

ing the format for the command usage text of ProcessJ. The general basic rules for specifying

commands, options, and parameters in ProcessJ are:

2A list of all ProcessJ compile error and warning messages can be found at https://processj.cs.unlv.edu/

74

www.manaraa.com

Table 4.1: Command line syntax notation

Notation Description
Text without square or angle brackets Items that must be present as shown
[Text inside square brackets] Optional items: commands or options
<Text inside angular brackets> Values for options or parameters
[<Text inside angular and square brackets>] Optional values for parameters
Equal sign Separator for option and value
Vertical bar Separator for mutually exclusive options

• A command must have a unique name consisting of one, or more, alphanumeric characters.

Contrary to UNIX commands, the names of commands in ProcessJ are case sensitive and do

not have a character limit. Furthermore, it is illegal to leave the name of a command empty

or assign the string literal "" to it.

• An option is a single dash (–) followed by one or more alphanumeric characters; for example,

-debug, -verbose, -help, -l, -ls. Contrary to UNIX options, short and long options

always start with a single dash.

• An option must have a unique short and/or long name that must be specified following a

single dash; for example, both -g and -debug represent the same option. Note, similar to

commands, names of options are also case sensitive, do not have a character limit, and cannot

be assigned the string literal "".

• An option may required a value. If no value is provided, a default one must exist. The

compiler will throw an exception if a required value is missing from an option or parameter

on the command line.

• An option or parameter marked as required must be present on the command line3. The

compiler will throw an exception if a required option or parameter is missing.

• Options cannot be grouped after a single dash; for example, an option of the form -xyz is

not equivalent to -x -y -z. Therefore, the former is an unknown option to the compiler and

will cause a runtime error to occur.

3At most one positional argument is required by the ProcessJ compiler, namely a .pj file. When running pjc

with no parameters the command usage is displayed.

75

www.manaraa.com

• Options can appear multiple times if they are defined to support multiple values. Otherwise,

a value may be accidentally overridden if a single-value option is entered multiple times; for

example, "-debug -debug -debug" sets the option flag to be true, false, and the back to

true again.

• Options can appear in any order; for example, -x -y -z is equivalent to -z -x -y and -y

-z -x. However, if an option requires a value, the value should be entered after the option’s

name.

• The ‘bare double dash’ (– –) marks the end of command options, after which positional ar-

guments are only accepted even if they start with a single dash; for example, both filename

and -verbose are interpreted as positional arguments in the program arguments "-debug

-- filename -verbose".

• A zero-based numbering marks the index of a positional argument on the command line; for

example, fileX is at index 0, fileY is at index 1, and fileZ is at index 2 in the program

arguments "-aa fileX -bb fileY -cc fileZ".

Similarly, the ProcessJ compiler uses the following rules when parsing arguments on the oper-

ating command line system:

• Arguments are delimited by white spaces regardless of the amount of white space characters

contained within.

• Arguments enclosed in double quotation marks ignore spaces as value separators in the com-

mand line; for example, the program arguments " arg0", "arg0 arg1", and "arg0 arg1

. . .argn" are arg0 , arg0 arg1 , and arg0 arg1 . . . argn where each square box rep-

resents a single string literal value.

• Special characters must be preceded by a backslash and be enclosed in double quotation

marks; for example, "\"arg\"" represents the string literal "arg", "\\" represents the

backslash character (\), and "\/" represents the forward slash character (/).

76

www.manaraa.com

• Using the ListParser class to convert a String into a list of values, an argument of the form

"arg0,arg1,arg2,. . . ,argn" can be split into an ArrayList of n String values based on one

or more comma (,) delimiters.

• A list of key-value argument pairs must be separated by the equal sign (=); for example,

the program argument "a=12 b=23 c=45" is interpreted as a set of key-value types where a

maps to 12, b maps to 23, and c maps to 45.

• If an option has arguments, these arguments must appear immediately after the option’s

split= attribute value; for example, in "-debug false", the value of the split attribute is

the white space character between the words debug and false; in "-debug=false", the

value of the split attribute is the equal sign (=); and in "-debug:false", the value of the

split attribute is the colon symbol (:).

4.1.3 Command Line Parsing Library

The ProcessJ command line interpreter is a Java annotation-based library modeled after the GNU

Getopt library [15] and Argparser Python module [4]. The difference, of course, is that through

annotations and reflection, ProcessJ provides a mapping of instance variables to command line

arguments. These instance variables can be accessed, operated on, updated, and then used to

shape the behavior of the program. In essence, with annotations we provide information to classes

and their fields. When the ProcessJ compilers is invoked, our command line interpreter uses this

information to parse arguments in the command line. These annotated fields are then mapped to

individual arguments, each argument is parsed using the information gathered from the annotated

field, and, finally, the field’s default value is updated via reflection at runtime.

Figure 4.2 illustrates three stages for building a command in ProcessJ; these stages are annota-

tion, reflection, and builder pattern. In the annotation stage, we use ‘custom’ annotations to define

a command and its set of options and arguments in a class. In the reflection stage, the command

line interpreter maps descriptions to options and arguments according to the specifications estab-

lished in the annotation stage. Finally, in the builder pattern stage, the program creates instance

of options and arguments in a sequence of steps according to the rules defined by the command

line interpreter.

77

www.manaraa.com

Annotation

Reflection

Builder Pattern

Command

Option

Argument

Object

Object
Object

Object

...

@interface Argument {

String[] name ...

String help() ...

...

}

...

@interface Option {

String[] name ...

String help() ...

...

}

...

@interface Parameters {

String name ...

boolean hidden() ...

...

}

Figure 4.2: Command line parsing library structure.

Before introducing the main components of this library, I will start with a short description

of annotations, reflection, and the builder pattern as they were useful when building ProcessJ’s

command line interpreter.

4.1.3.1 Annotations

A Java annotation [92] is a form of metadata that can be embedded into a source file and later

be processed at compiled time or at runtime via reflection. While annotations do not change the

semantics of a program – they do not directly affect the operations of the code itself, they can

actually be use to affect the way programs are treated by tools and libraries.

We use annotations to ‘extend’ the Java language by adding additional descriptions to our

classes and their fields. This allows us to collect information at compiled time or during runtime

and generate code using the information we collect from the annotated classes and fields.

78

www.manaraa.com

4.1.3.2 Reflection

The Java Reflection API [73] enables a program to see and manipulate itself at runtime. Reflection

provides us the means to inspect the structure of classes, interfaces, fields, methods, constructors

and their attributes, and determine the capabilities of objects as we modify their runtime behavior.

We can also use reflection to make method invocations, instantiate objects, and change field values.

Java Reflection is a powerful tool with an endless list of features, so much that it is too com-

plex to cover in detail. We shall therefore only mention the classes used by the command line

interpreter:

• Class: This class represents and provides information about classes and interfaces. There-

fore, it can be used to examine the runtime properties of the object.

• Field: This class provides dynamic access to and information about a field declared in a

class or interface, such as its access modifier, name, value, and annotation.

• Method: This class provides access to and information about a method declared in a class

or interface, such as its access modifier, return type, name, parameter types, and annotation.

• Constructor: This class provides access to and information about a constructor for a class,

such as its access modifier, name, parameter types, and annotation.

• Annotation: This class provides access to and information about all annotation types.

It should be noted that the command line interpreter uses reflection to get access to a class, field,

method, and constructor information; to make a method invocation through a Method object that

represents the underlying method being invoked, or through a value created at runtime representing

an object of the class in which the method is defined; and to make instance fields (variables and

methods) accessible, to get the value of a field, to determine the modifiers used on a class, and to

create a class object using the constructor defined in the class.

4.1.3.3 Builder Pattern

We use the builder pattern described in [49, 51] to create various objects that required the same

type of constructing steps. For example, the construction of an option depends on the number of

79

www.manaraa.com

arguments specified in an annotated field. If there are only two arguments in an annotated field,

these two arguments are used to build (say) option A at runtime. Another annotated field, however,

could have four arguments instead of two. The process involved in the creation of (say) option B

for the second annotated field is the same as option A, but B’s internal representation is different.

This is shown in Listing 4.4.

Listing 4.4: Building an option.

1: OptionValue.Builder A = new OptionValue.Builder();

2: A.addSimpleName(...)

3: .addName(...).build();

4:

5: OptionValue.Builder B = new OptionValue.Builder();

6: B.addSimpleName(...)

7: .addField(...)

8: .addArity(...)

9: .addOptionType(...).build();

As seen in Listing 4.4, we can change how an option is built. We do this by indicating the

parts that are actually required to construct the option, which simplifies the specifications that are

needed during the construction phase.

4.1.3.4 Components

As stated before, we must define which command, options, and arguments are valid in our program.

This is required to enable the CLIBuilder, the command line interpreter, to parse and issue errors

when the command line contains incorrect or invalid input.

Command

A command is a particular type of argument that gets invoked automatically when specified on

the command line. Commands are the actions which are supported by the command line inter-

preter. Consider, for example, some of the built-in commands such as pjc and pj. Technically,

any command specified after the names of these commands is, in fact, a sub-command. In addi-

tion, sub-commands to the root command – the name of the executable script (e.g., pjc) – may

80

www.manaraa.com

themselves have their own commands. For example, the command pjc -info cli have pjc as

the root command, -info as the sub-command, and cli as the sub-command to -info. Since

a command supports sub-parsing which allows for sub-commands, if a program supports several

commands and a user enters several of them at the same time, they will be executed in the order in

which they were declared.

To integrate a custom command class to the compiler, the command must extend the Command

class which is the base class for all commands in ProcessJ. Listing 4.5 shows the class and methods

declared inside the Command class.

Listing 4.5: The Command class.

1: public abstract class Command {

2: @Override

3: public final int hashCode() {

4: final int prime = 31;

5: int result = 1;

6: result = prime * result + getClass().hashCode();

7: return result;

8: }

9: @Override

10: public final boolean equals(Object obj) {

11: if (this == obj)

12: return true;
13: if (obj == null getClass() != obj.getClass())

14: return false;
15: return true;
16: }

17: }

The subclass will contain instance fields annotated with @Option and/or @Parameter. Note,

there is no direct construction of this class at runtime. That is to say, we do not have to allocate

an object of type subclass using the new operation. Instead, the CLIBuilder is responsible for

creating an instance of the class that extends Command reflectively. A subclass must therefore never

provide a default (no-argument) constructor. An exception is thrown when the CLIBuilder is not

able to create an instance of a class that sub-classes Command. This happens when an invocation of

the default constructor of the subclass and super class fails.

81

www.manaraa.com

Parameters

These are names that can be used to identify commands or options which act as commands. For

example, when specifying the include option, we can use any of the following two aliases: -I

or -include. In ProcessJ, parameters is an interface that is used on a command that sub-classes

Command. We annotate a custom command class with @Parameters so that it gets an invocation of

execution by the parser when it is encountered. This annotation is used to specify default settings

for a command, and can only be placed on a class, an interface, or an enum. Listing 4.6 shows

the settings for this interface.

Listing 4.6: The Parameters interface.

1: @Inherited

2: @Retention(RetentionPolicy.RUNTIME)

3: @Target(ElementType.TYPE)

4: public @interface Parameters {

5: String name() default "";

6: boolean hidden() default false;
7: String help() default "";

8: String[] header() default {};

9: String[] notes() default {};

10: String[] footer() default {};

11: String[] version() default {};

12: Class<? extends IVersionPrinter> versionPrinter()

13: default IVersionPrinter.class;

14: }

The list of all available settings for a command is:

• name, the name of a command.

• hidden, specifies that this command should, or should not, be included in the help informa-

tion.

• header, a descriptive text messaged used in help information.

• notes, an optional summary description of a command.

82

www.manaraa.com

• footer, additional description of a command.

• version, a simple and short version information of a command.

• versionPrinter, a custom version information that gets instantiated when provided. If none is

provided then the default specified version information in ProcessJ is used.

Option

As the name implies, options are generally not a required command element. They provide a way

to modify the behavior of a command. For example, the pjc build command may include the

-console-ansi-code option, which we can use to enable ANSI color in the console output. In

ProcessJ, an option is represented as an interface. It is used to specify default setting for command

line options, and it can only be placed on instance fields in classes that subclass Command. Since

options are parsed in sequence and matched to arguments specified on the command line, we

annotate an instance field with @Option so that the parser can set the field’s value through its

annotation settings. Listing 4.7 shows the settings for this interface.

Listing 4.7: The Option interface.

1: @Retention(RetentionPolicy.RUNTIME)

2: @Target(ElementType.FIELD)

3: public @interface Option {

4: String[] names() default {};

5: String help() default "";

6: String defaultValue() default "";

7: String arity() default "";

8: String metavar() default "";

9: boolean required() default false;
10: boolean hidden() default false;
11: String split() default "";

12: @SuppressWarnings("rawtypes")

13: Class<? extends OptionParser>[] handlers() default {};

14: }

The list of all available settings for an option is:

• name, the name (or names) of an option.

83

www.manaraa.com

• help, the descriptive text messaged used in the help information.

• defaultValue, a default value for this option as a String.

• arity, specifies the minimum (and maximum) number of command line argument values an

option should consume.

• metavar, the name that represents the values for this argument.

• required, indicates whether an option is required.

• hidden, specifies that an option should or should not be included in the help information.

• split, the separator between an option and its actual value.

• handlers, the converter used to parse the value for the option.

Argument

Both commands and options can have associated values. The value associated with a command or

option is called the argument. For example, the pjc command includes a list of source files. This

list of files is required when we specify such command on the command line. Similarly, options

may have values associated with them. For example, the -console-ansi-code option has an

argument for specifying an on/off switch value that enables/disables ANSI color in the console

output. In ProcessJ, an argument is an interface similar to the @Option interface, except that it

has an index that represents the exact position of a positional argument on the command line. Like

options, the @Argument annotation should be placed only on instance fields. Listing 4.8 shows

the settings for this interface.

84

www.manaraa.com

Listing 4.8: The Argument interface.

1: @Retention(RetentionPolicy.RUNTIME)

2: @Target(ElementType.FIELD)

3: public @interface Argument {

4: String help() default "";

5: String defaultValue() default "";

6: String order() default "";

7: String metavar() default "";

8: boolean required() default false;
9: boolean hidden() default true;
10: String split() default " ";

11: @SuppressWarnings("rawtypes")

12: Class<? extends OptionParser> handler()

13: default OptionParser.class;

14: }

The list of all available settings for an argument is:

• help, the descriptive text messaged used in the help information.

• defaultValue, the default value for this option as a string.

• order, specifies the argument on the command line. A field annotated with @Argument must

have a specific order. For example, "order=0,order=1,...,order=n", or "order=0..n"

where n is an integer. This is necessary for the parser to capture the exact position of the

positional argument from the command line.

• metavar, the name that represents the values for this argument.

• required, indicates whether an option is required.

• hidden, specifies that an option should or should not be included in the help information.

• split, the separator between an option and its actual value.

• handlers, the converter used to parse the value for the option.

85

www.manaraa.com

Factory

The Factory is a singleton class consisting of a collection of type/handler pairs associated with

registered options and arguments declared in a class that sub-classes Command. The job of the

Factory is simple. When the program starts, the Factory loads all built-in data types to make

them available upon request. The word ‘load’ in this instance means associating a type name with

its corresponding data type. The parser uses the Factory class to parse values for options and

arguments specified on the command line.

Since the command line parsing library relies heavily on reflection, the traditional Java-

Singleton design pattern described in [50] can easily be destroyed using this feature. We decided

to use an enum to implement Singleton instead. This is because an enum is more concise and pro-

vides the serialization mechanism needed against multiple instantiations. An enum also prevents

serialization and reflection attacks as suggested in [35]. Table 4.2 contains a list of data types that

are loaded by the Factory using reflection.

86

www.manaraa.com

Table 4.2: Default built-in types supported by the command line interpreter

Type Name Representation Converter
byte Byte.class

Byte.TYPE
ByteParser

short Short.class
Short.TYPE

ShorParser

character Character.class
Character.TYPE

CharacterParser

integer Integer.class
Integer.TYPE

IntegerParser

long Long.class
Long.TYPE

LongParser

float Float.class
Float.TYPE

FloatParser

double Double.class
Double.TYPE

DoubleParser

big decimal BigDecimal.class BigDecimalParser
boolean Boolean.class

Boolean.TYPE
BooleanParser

string String.class StringParser
file File.class FileParser
url URL.class URLParser
enum Enum.class EnumParser
list List.class ListParser
map Map.class MapParser

87

www.manaraa.com

Custom Handler

Although the parser controls how a string value taken from the command line is mapped to a field,

a ‘handler’ is in charge of translating the string into a typed value suitable for use in our program.

To integrate a custom handler class, the handler must extends the abstract OptionParser class

which is the base class for all handlers in ProcessJ. Instances of type OptionParser are used

to parse values for options and arguments. Further still, an instance of this class will throw an

exception when the value of an option or argument could not be parsed to a type T taken from

a class declaration. Listing 4.9 shows the class and methods declared inside the OptionParser

class. An implementation of this class can be seen in Section 4.1.4.

Listing 4.9: The OptionParser class.

1: public abstract class OptionParser<T>
2: implements IOptionParser<T> {

3: protected final String optionName;

4: public OptionParser(String optionName) {

5: this.optionName = optionName;

6: }

7: public String getParam() {

8: return optionName;

9: }

10: }

4.1.4 A Command Line Example

The example program in Listing 4.10, emphasizes some of the basics concepts for developing a

command line parser for the ProcessJ compiler. It illustrates the anatomy of a class that extends

Command along with declarations of options and parameters within the class body. Note, in the

next sections, I will show code snippets for this example. The entire source code is found in

Appendix F.

88

www.manaraa.com

Listing 4.10: A command line example.

1: @Parameters(name="calc")

2: public class Example extends Command {

3: @Option(names="-op1",

4: help="first operand",

5: split="=",

6: metavar="<num>",

7: arity="1",

8: handlers=OperandParser.class)

9: public int op1;

10: @Option(names="-op2",

11: help="second operand",

12: metavar="<num>",

13: arity="1",

14: handlers=OperandParser.class)

15: public int op2;

16: @Option(names="-add",

17: help="Adds two numbers",

18: defaultValue="false")

19: public boolean addition;

20: @Option(names="-sub",

21: help="subtract two numbers")

22: public boolean subtraction;

23: @Option(names="-help",

24: help="Show this help message and exit",

25: defaultValue="false")

26: public boolean help;

27: ...

65: }

This example is used to create a command line utility, called calc, that can ‘add’ or ‘subtract’

two integers. We should emphasize that this command is not, in any way, part of the list of com-

mands available in ProcessJ. We only use this program to show how easy it is to create a command

in ProcessJ. We will further demonstrate how this program matches and parses values out of the

argument array of the main() method, terminates if there are errors, computes the result of an ad-

dition or subtraction operation, and prints a nicely-formatted list of options and parameters each

having a short description that shows their names, default values, required arguments, etc.

89

www.manaraa.com

Breaking Down the Command Line Example

The structure of the command line example is made of:

• One command name, in this case, a string used to reference the command calc.

• Three flag options; an option -add that adds two integers, an option -sub that subtract two

integers, and an option -help that displays a command usage.

• Two single-value options; an option -op1 that takes a number and throws an exception

when anything but a number is given, and an option -op2 which also takes a number and

throws the exact exception when a number is not given.

Using the above information, the command line interpreter can generate a help message and

issue errors when parsing incorrect or invalid input. Table 4.3 lists the main components of the

program, which are used by the CLIbuilder during the parsing phase. From these pieces of

information, we can define which commands, options, and parameters the compiler must accept

before building the parser in line 28 (Listing 4.11).

Table 4.3: Main components of the example program

Type Name Parameters Arity
command calc option/argument —
option -add Boolean 0
option -sub Boolean 0
option -op1 integer 1
option -op2 integer 1
option -help Boolean 0

The following should be noted: First, our command does not support positional arguments,

thus, any remaining arguments on the command line will cause an exception. Second, none of the

above options are required, thus, they do not need to be specified by the user on the command line

as they all are optional. Finally, even if options have no default values assigned to them, variables

declared as fields (be it static or instance variable of a class) are initialized with a default value by

the runtime system in Java.

90

www.manaraa.com

Walkthrough the Command Line Example

First, it is necessary to register our command. We do this by calling the addCommand() method

with the runtime class of Example as its parameter. This is illustrate in line 28 (Listing 4.11).

Suppose we execute the following command:

pjc calc -add -op1=13 -op2 34

The args array is passed to the handlerArgs() method in line 31 to do the actual parsing.

The parser first splits the arguments according to the description specified in each option and

parameter. Figure 4.3 shows the further decomposition of the command line arguments passed to

the main() method. After splitting the arguments, the parser attempts to match an argument from

the decomposed args array to one of the specified options on the command line. When a match

for an option is found, and if the option requires a value, the next argument from the decomposed

args array is grabbed. The parser will then attempt to parser this argument. If the argument fails

to be parsed, an exception is thrown. Otherwise, the parser continues until all specified options are

matched and all of their values successfully parsed.

5: 34
4: -op2
3: -op1=13
2: -add
1: calc
0: pjc

7: 34
6: -op2
5: 13
4: =
3: -op1
2: -add
1: calc
0: pjc

⇒
args

expanded args

Figure 4.3: Expanded command arguments.

Once the command and all of its options are finally matched, including the options’ values,

lines 37 and 38 are executed (Listing 4.11).

91

www.manaraa.com

Listing 4.11: Executing the -add option.

27: public static void main(String[] args) {

28: CLIBuilder builder =

new CLIBuilder().addCommand(Example.class);

29: Example sp = null;
30: try {

31: builder.handleArgs("-add -op1 13 -op2 34"

.split(" "));

32: sp = builder.getCommand(Example.class);

33: } catch(Exception e) {

34: System.out.println(e.getMessage());

35: System.exit(1);

36: }

37: if (sp.addition) {

38: System.out.println(String.format("Add operation: " +

39: "%s + %s = %s", sp.op1, sp.op2, (sp.op1 + sp.op2)));

40: } else if (sp.subtraction) {

41: System.out.println(String.format("Add operation: " +

42: "%s + %s = %s", sp.op1, sp.op2, (sp.op1 + sp.op2)));

43: }

44: ...

To display the command usage, we execute the following command:

pjc calc -help

After the option -help is matched, lines 35, 36, and 37 are executed in Listing 4.12.

Listing 4.12: Executing the -help option.

43: ...

44: if (sp.help) {

45: Formatter formatHelp = new Formatter(builder);

46: System.out.println(formatHelp.buildUsagePage());

47: System.exit(0);

48: }

49: ...

92

www.manaraa.com

> pjc calc -help

usage: calc [-add] [-help] [-op1=<num>] [-op2 <num>] [-sub]

parameters:

options:

-add Adds two numbers (default=false)

-help Show this help message and exit (default=false)

-op1=<num> first operand

-op2 <num> second operand

-sub subtract two numbers

Figure 4.4: Command usage message.

The help message is generated and formatted as shown in Figure 4.4.

Suppose we now invoke the command as follows:

pjc calc -add -op1=1r -op2 34

Figure 4.5 shows the error message generated after invoking the above command with the

wrong arguments.

> pjc calc -add -op1=1r -op2 34

"-op1" could not convert "1r" to Integer.

Figure 4.5: Command error message.

Consider making one last invocation to this command with the following arguments:

pjc calc -add -o=13 -op2 34

Figure 4.6 shows the auto-completion feature in action. The parser uses auto-completion to

provide a list of suggestion to the user when an incomplete or invalid command is entered.

A nice feature of the command line interpreter is that it can perform simple checks on the

given arguments and complete or make corrections of commands that begin with a specific set of

characters. While a lot has been achieved, the future work section contains more information on

what is to come.

93

www.manaraa.com

> pjc calc -add -o=13 -op2 34

Unknown @Option "-o" for @Parameters "calc". Did you mean to say?

-op1

-op2

Figure 4.6: Command auto-complete message.

4.1.5 Options and Parameters in ProcessJ

The list of option and parameters along with their descriptions can be seen in Appendix G.

94

www.manaraa.com

Chapter 5

Runtime System and Code Generation

Before considering the code generation, we need to understand what the ProcessJ compiler – we

referred to it as the ProcessJ-JVM compiler – tries to generate. The code generation is in reality

a framework consisting of various component parts (templates) which can be customized indi-

vidually. Such components are then put together to generate Java code that after compilation is

instrumented and rewritten. In order to build a java class from a ProcessJ file, the ProcessJ com-

piler generates actual Java source code, and then invokes a Java compiler using this source code

to create .class files. Of course, these class files are executed by the JVM which executes the

ProcessJ program in turn. It should be clear that access to a Java compiler is needed due to the

code generated for the JVM.

In this chapter, I describe the ProcessJ’s scheduler and its constituent parts, as well as the

overall design of the Java runtime system. In addition, I explain how classes are created using

templates to generate compilable Java code.

5.1 Bytecode Rewriting

The ProcessJ compiler generates Java source code that is further compiled with the Java compiler

to produce class files. These class files are then rewritten using the ASM [6, 38] bytecode rewriting

tool to handle yielding and resumption. Despite the fact that Java does allow labels, which can be

used with breaks and continues to transfer the flow of control to labels, it does not allow labels

for explicit gotos. However, explicit jumps in Java source can be achieved in ProcessJ through the

Instrumenter – a class that implements the ASM library to dynamically generate classes directly

95

www.manaraa.com

in bytecode form. We use the Instrumenter to mark labels along with resumes and yields us-

ing ‘dummy’ method calls which are replaced by actual gotos, labes, and returns in the bytecode.

This is done to allow the code with explicit yield and resume points to be scheduled cooperatively.

label is a dummy method used by the ASM tool to record the location where the code should

resume depending on the value of the runLabel. These labels are eventually removed from the

generated code. In the same way, resume invocations are replaced with goto instructions to per-

form jumps to the appropriate place in the code. Finally, yield is translated into a return statement

by the bytecode rewriting along with some logic to set the runLabel. For example:

...

yield(1);

L1:

Where 1 represents the runLabel that the yield returns. Note that we represent the label as

L1:, but in the generated code we use a dummy method called label(. . .). Therefore, when a

process is scheduled to run again, it must continue from right after the yield(. . .) method that

suspended the process – it should continue from L1 in the code above.

Consider the implementation of the prefix process shown in Section 2.2.3 (Listing 5.1). The

equivalent Java code and byte code rewriting is explained in this section.

Listing 5.1: The prefix process – revisit.

26: public void prefix(int initVal,

27: chan<int>.read in,

28: chan<int>.write out) {

29: out.write(initVal);

30: while (true) {

31: int x;

32: x = in.read(); // read from Delta

33: out.write(x); // write to Plus

34: }

35: }

Figure 5.1 shows the code generated for the prefix process. After compilation, the cases in the

switch statement (labeled with ‘∗’) are adjusted to jump to the locations of the label() method. A

96

www.manaraa.com

label() method is an empty method used to mark the address of a particular place in the program.

Note that each case in the switch is followed by a call to an empty resume() method. A resume()

method is a goto instruction to which the jumps of the switch statement will jump. These are

labeled with ‘−’.

97

www.manaraa.com

public static class proc$prefix extends PJProcess {
/∗∗ Locals and parameters transformed into fields ∗/
protected int pd$initVal1;
protected PJChannel<Integer> pd$in2;
protected PJChannel<Integer> pd$out3;
protected int ld$x1;

public proc$prefix(int initVal, PJChannel<Integer> in, PJChannel<Integer> out,
int x) {

pd$initVal1 = initVal;
pd$in2 = in;
pd$out3 = out;
ld$x1 = x;

}

@Override
public synchronized void run() {

/∗∗ Jumps ∗/
switch(runLabel) {
case 0: break;

∗ case 1: resume(1); break;
∗ case 2: resume(2); break;
∗ case 3: resume(3); break;
∗ case 4: resume(4); break;

default: break;
}
/∗∗Write operation ∗/

pd$out3.write(this, pd$initVal1);
runLabel = 1;
yield();

− label(1);
/∗∗ Read and write operations ∗/
while (TRUE) {

if(! pd$in2.isReadyToRead(this)) {
runLabel = 2;
yield();

}

Figure 5.1: Java implementation of the prefix process.

98

www.manaraa.com

/∗∗ Read operation ∗/
− label(2);

ld$x1 = pd$in2.read(this);
runLabel = 3;
yield();
/∗∗Write operation ∗/

− label(3);
pd$out3.write(this, ld$x1);

runLabel = 4;
yield();

− label(4);
} // end while

} // end run method
} // end prefix class

Figure 5.2: Java implementation of the prefix process continuation.

Labels

The code generated for such labels (the invocation of a dummy label method) has the form as

illustrated in Figure 5.3, where each label can be substituted for cases 1, 2, 3, etc. (line 100

indicates that it is label 1 because the constant 1 is loaded onto the stack) in the switch statement.

99: aload 0
100: iconst 1
101: invokevirtual label:(I)V

. . .
130: aload 0
131: iconst 2
132: invokevirtual label:(I)V

. . .
162: aload 0
163: iconst 3
164: invokevirtual label:(I)V

. . .

Figure 5.3: label() invocation before the bytecode rewriting.

99

www.manaraa.com

All label invocations, like the ones in Figure 5.3, should become nop instructions as illustrated

in Figure 5.4.

99: nop // was aload 0
100: nop // was iconst 1
101: nop // was invokevirtual label:(I)V

. . .
130: nop // was aload 0
131: nop // was iconst 2
132: nop // was invokevirtual label:(I)V

. . .
162: nop // was aload 0
163: nop // was iconst 3
164: nop // was invokevirtual label:(I)V

. . .

Figure 5.4: label() invocation after the bytecode rewriting.

Switch

The switch statement is translated into a tableswitch instruction like the one shown in Figure 5.5.

The labels are incorrect and must be replaced by those we mentioned earlier. We used the ASM

bytecode rewriting tool to locate the addresses of all label invocations and replace then by nop

instructions. Similarly for resume invocations, we replace them with goto instructions (as shown

in Figure 5.6 and Figure 5.7) which transfer control to the appropriate address determined by the

location of the label invocations.

4: tableswitch 0 to 4 4: tableswitch 0 to 4
0: 40 0: 40
1: 43 1: 43
2: 51 2: 54
3: 59 3: 65
4: 67 4: 76
default: 75 default: 87

Figure 5.5: resume() invocation before (left) and after (right) the bytecode rewriting.

100

www.manaraa.com

43: aload 0
44: iconst 1
45: invokevirtual resume:(I)V
48: goto 75
. . .

Figure 5.6: resume() invocation before the bytecode rewriting.

43: nop // was aload 0
44: nop // was iconst 1
45: goto 101 // was invokevirtual resume:(I)V
48: goto 75
. . .

Figure 5.7: resume() invocation after the bytecode rewriting.

Returns

We implement a return following yield invocations. The generated bytecode looks like the code

shown in Figure 5.8.

107: aload 0
108: invokevirtual yield:()V
111: goto 227

. . .
223: aload 0
224: invokevirtual terminate:()V
227: return

Figure 5.8: yield() invocation after the bytecode rewriting.

5.2 The Runtime Scheduler

To make use of the JVM as an execution platform for processes that are willing to give up the

CPU, our system relies on cooperative non-preemptive scheduling. As already discussed, ProcessJ

101

www.manaraa.com

uses a very simple cooperative scheduler running a single tread at any one time. The scheduler

interacts with a run queue in which process are added to the tail of the queue when they yield and

are removed from the head of the queue when they are ready to run again. In addition, a process

can add new processes to the run queue, which usually occurs when the compiler generates code

for a par-block or a par-for. It should be noted that the thread executing the process is that of the

scheduler. A process must therefore, after some time, voluntarily return control to the scheduler

by giving up the CPU.

Although the scheduler runs its own thread, at the same time as the scheduler’s thread is run-

ning, a second Java thread is run individually, namely, the timer handler. The timer handler is a

separate thread that consistently attempts to remove expired timer objects from the timer queue.

These timer objects are used to mark processes that are ready to run again after a present time.

Furthermore, much like the run queue, timer objects are only removed from the head of the timer

queue when their delay expires. When a timer object expires, the timer handler sets the process

with expired timer object ready to run again. This process is eventually executed by the scheduler

when it gets to the head of the run queue. Figure 5.9 illustrates the interaction between these four

components.

Figure 5.9: Runtime system overview.

102

www.manaraa.com

5.3 The CSP Runtime System for Java

This sections introduces the set of classes built for the Java runtime system – we refer to them as

the JVMCSP – and a code generation scheme, which, as it names suggests, turns ProcessJ code to

Java.

5.3.1 StringTemplate Library

We assemble Java code using the visitor pattern technique [49] together with a number of tem-

plates each having a unique name. A template consists of various pieces of text and attribute

expressions, which are combined and rendered to text using the StringTemplate library [77]. To

create a compilable Java file, the template engine replaces the attributes of a template with the

proper intermediate code given by a visitor object at runtime. These attributes, which may be un-

typed values or template instances, are evaluated only when asked to during rendering. Typically,

this occurs when the ProcessJ compiler access an argument, namely an attribute name, used by a

template expression in a tree-traversal method.

Listing 5.2 shows a piece of template code that gets rendered by the ProcessJ compiler after a

tree-traversal operation. Note how this template definition is similar to a function definition in most

programming languages. However, it does not have a return type, and the list of input parameters

is a comma-separated list of just names. When declaring a template with parameters, we replace

a parameter with a value by using a set of angular brackets (<>) in the template region (the body

of the template). For example, in the BinaryExpr template, each argument (lhs, rhs, and op) is

replaced with the expression returned by a visitor object during the traversal of a tree node.

Listing 5.2: The template for a ProcessJ binary expression.

1: BinaryExpr(lhs, rhs, op) ::= <<

2: <lhs> <op> <rhs>

3: >>

Listing 5.3 shows a tree-traversal method that represents an expression that has a binary oper-

ator. The visitor object creates an instance of a template class in line 5, namely BinaryExpr. We

103

www.manaraa.com

reference the attributes of this template in lines 11, 12, and 13, and then we ‘inject’ the appropriate

values, respectively. Finally, we ‘render’ the proper Java code, that is, we generate some text after

combining all other rendered code, in line 15, which is then return as a string. An example of a

ProcessJ program with a binary expression can be seen in Listing 5.4. The generated piece of code

after evaluating the binary expression in shown in Listing 5.5.

Listing 5.3: The binary expression visitor.

1: public T visitBinaryExpr(BinaryExpr be) {

2: Log.log(be.line + ": Visiting a BinaryExpr");

3:

4: // Generated template after evaluating this visitor

5: ST stBinaryExpr = _stGroup.getInstanceOf("BinaryExpr");

6: String op = be.opString();

7: String lhs = (String) be.left().visit(this);
8: lhs = be.left().hasParens ? "(" + lhs + ")" : lhs;

9: String rhs = (String) be.right().visit(this);
10: rhs = be.right().hasParens ? "(" + rhs + ")" : rhs;

11: stBinaryExpr.add("lhs", lhs);

12: stBinaryExpr.add("rhs", rhs);

13: stBinaryExpr.add("op", op);

14:

15: return (T) stBinaryExpr.render();

16: }

Listing 5.4: ProcessJ code with a binary expression.

1: public void main(string args[]) {

2: int a = ((5 + 4) * 6) - 7;

3: }

Listing 5.5: Example of a binary expression generated by a string template.

29: ...

30: _ld$a1 = ((5 + 4) * 6) - 7;

31: ...

104

www.manaraa.com

Lastly, certain attributes in a template may need to be evaluated, be it to determine types, create

variables, etc., before they are rendered during the traversal of a parse-tree node. To test if an

attribute has a value or is a Boolean object that evaluates to true, we use a conditional expression

such as <if(...)>. Note that the . . . is a place holder for some attribute whose value is rendered

if and only if it has one. For example, the attribute body in Listing 5.6 is rendered if the conditional

expression evaluates to true.

Listing 5.6: Evaluating the presence or absence of an attribute’s value.

1: ...

2: <if(body)><body; separator="\n\n"><endif>

3: ...

5.3.2 JVMCSP Runtime Components

Like occam/occam-π before it, at the heart of any ProcessJ program are processes and channels –

processes being pieces of code that can be executed sequentially or concurrently and channels be-

ing the means of communication between processes. ProcessJ, however, takes an object-oriented

approach to implementing CSP. The core of the JVMCSP runtime system is composed of the fol-

lowing set of CSP primitives implemented as Java classes: PJProcess, PJChannel (from which

PJOne2OneChannel, PJOne2ManyChannel, PJMany2OneChannel, and PJMany2ManyChannel

are derived), PJBarrier, PJPar, PJTimer, PJRecord, and PJProtocolCase.

Since the runtime system of ProcessJ is written in Java, we use classes and objects to create

complex functionality for layered networks of communicating processes. In reality, these layers

of composable processes are objects of type PJProcess. This means that we use an object to

maintain the encapsulation of data and algorithms for managing that data (which is something that

is easily lost in OOP) using the above primitives. In addition, the interaction between processes

is only possible through communication channels (objects of a derived PJChannel type used to

transmit any assignable type, such as a primitive, a record or a protocol) and barriers (an object

of type PJBarrier) on which parallel processes enroll, synchronize, and resign. This is due to

classes requiring to be set up before processes can run sequentially or concurrently. Therefore,

105

www.manaraa.com

we use channels and barriers as means by which objects communicate (can access shared data)

without invoking each other’s methods.

5.3.2.1 State Management

Procedures, parameters, and locals are encoded into unique names so that the JVM can separate

common names in a ProcessJ program. This is also done to facilitate method overloading and

visibility of variables and methods within different scopes. Additionally, local and parameters are

transformed into fields in the generated Java code. Procedures, on the other hand, are transformed

into classes if they yield or regular Java static methods if they do not. A field representing a

local variable will have a name of the form ldXname, where ld stands for ‘local declaration’,

X is an integer number (a number associated with every new local variable declaration), and name

represents the actual name of the local. In much the same way, formal parameters are transformed

in to fields but with pd prefixed, where pd stands for ‘parameters declaration’. Furthermore, a

class representing a procedure that yields will have a name of the form proc$name, where proc

stands for ‘procedure’ and name represents the actual name of the procedure. A static method

representing a regular procedure is transformed in a similar manner but with method prefixed.

5.3.2.2 Process

An instance of PJProcess encapsulates data and algorithms for managing that data, where both its

data and algorithms are private to the outside world. A process is therefore an instance of a class

that extends the Java class called PJProcessJ (Listing 5.7), and its actions are defined by the run()

method in line 7. To create an object of this type, the run() method must be implemented in the

derived PJProcessJ class. The scheduler calls the run() method in order to execute the process

until it voluntarily yields or terminates.

106

www.manaraa.com

Listing 5.7: The PJProcess class.

1: public class PJProcess {

2: protected int runLabel = 0;

3: protected boolean ready = true;
4: protected boolean terminated = false;
5: public static Scheduler scheduler;

6:

7: public void run() {

8: };

9: ...

Any parameters passed to the process must be passed to the constructor of the derived class as

its run() method takes no parameters. This allows parameters to be kept as fields of the PJProcess

subclass. In addition, all local variable declarations that appear in the body of the procedure are

translated into fields. These fields are used to maintain the local state of the procedure between

invocations. The PJProcess class contains a yield() method in line 43 (Listing 5.9), which is

called when a process wants to yield and be descheduled. When a process yields or is not ready to

run, it is put back in the run queue using the schedule() method in line 10 (Listing 5.8). A call to

this method moves the suspended or not-ready to run process to the end of the scheduler’s process

queue for future scheduling. This process queue is accessed through a static object reference,

namely, the scheduler variable in line 5 (Listing 5.7).

As mentioned previously, a process must voluntarily give up the CPU and return control to

the scheduler so that it can run a different process. This can be done by returning control to the

scheduler through a return statement. Naturally, yielding is just a return statement. Whenever

a synchronization primitive is called, a process voluntarily yields by setting itself ready or not-

ready to run. The process can be set ready or not-ready to run by using the setReady() method in

line 21 (Listing 5.8), and the setNotReady() method in line 28 (Listing 5.8), respectively. Waiting

is performed via the yield() method in line 43 (Listing 5.9). This call sets the runLabel in line

2 (Listing 5.7), which is used for resumption when the process is rescheduled. The runLabel is

simply an address that marks the point where the process should resume execution. The resume()

method in line 49 (Listing 5.9) is used as a ‘goto’ label to transfer control to the appropriate address

determined by the location of the label() method in line 46 (Listing 5.9).

107

www.manaraa.com

Listing 5.8: The PJProcess class – scheduling and descheduling a process.

10: public void schedule() {

11: scheduler.insert(this);
12: }

13:

14: public void finalize() {

15: }

16:

17: public boolean isReady() {

18: return ready;

19: }

20:

21: public synchronized void setReady() {

22: if (!ready) {

23: ready = true;
24: scheduler.inactivePool.decrement();

25: }

26: }

27:

28: public void setNotReady() {

29: if (ready) {

30: ready = false;
31: scheduler.inactivePool.increment();

32: }

33: }

34: ...

The finalize() method in line 14 (Listing 5.8) is executed when the process terminates. A

process in a par-block, for example, uses the finalize() method to decrement the number of running

processes wrapped in the par. This way, we can assure that the process containing the par-block

will be set ready to run and then rescheduled again when all of its processes have terminated.

Additionally, the terminate() method in line 35 (Listing 5.9) sets the field terminated in line 4

(Listing 5.7) to true to indicate that the process has terminated, while the terminated() method in

line 39 (Listing 5.9) returns true if and only if the process has in fact terminated.

108

www.manaraa.com

Listing 5.9: The PJProcess class – yielding and terminating a process a process.

35: public void terminate() {

36: terminated = true;
37: }

38:

39: public boolean terminated() {

40: return terminated;

41: }

42:

43: public void yield() {

44: }

45:

46: public void label(int label) {

47: }

48:

49: public void resume(int label) {

50: }

51: }

Template Layout

Listing 5.10 shows an example of a simple ProcessJ program with a main procedure that concur-

rently runs processes inside the par-block. The main() procedure starts some processes concur-

rently. The foo() procedure is passed the writing-end of a channel which in turn sends the value 4

across the same channel. Since the statement in line 3 performs a write operation, such a statement

will generate code that yields. The procedure will then implicitly yield, thus it will be transformed

into a class; that is, a class that the extends PJProcess. Listing 5.11 shows the generated Java

code for foo. The template in Listing 5.14 is used to generate this class.

109

www.manaraa.com

Listing 5.10: Example of a simple PJProcess program.

1: public void foo(chan<int>.write out) {

2: ...

3: out.write(4);

4: }

5:

6: public void main(string args[]) {

7: chan<int> c;

8: par {

9: ...

12: foo(c.write);

13: }

14: }

110

www.manaraa.com

Listing 5.11: The generate the Java class for foo.

1: public static class _procfoocwI extends PJProcess {

2: protected PJChannel<Integer> _pd$out1;

3:

4: public _procfoocwI(PJChannel<Integer> _pd$out1) {

5: this._pd$out1 = _pd$out1;

6: }

7:

8: @Override

9: public synchronized void run() {

10: switch (this.runLabel) {

11: case 0: break;
12: case 1: resume(1); break;
13: default: break;
14: }

15:

16: _pd$out1.write(this, 4);

17: this.runLabel = 1;

18: yield();

19: label(1);

20:

21: terminate();

22: }

23: }

111

www.manaraa.com

Listing 5.12: The template for a ProcessJ process.

1: ProcClass(name, types, vars, ltypes, lvars, methods, main,

2: switchBlock, syncBody) ::= <<

3: public static class <name> extends PJProcess {

4:

5: <if(vars)><types,vars:{t,v | protected <t> <v>};

6: separator=";\n">;<\n><endif>
7:

8: <if(lvars)><ltypes,lvars:{t,v | protected <t> <v>};

9: separator=";\n">;<\n><endif>
10:

11: <if(methods)><methods; separator="\n"><\n><endif>
12:

13: public <name>(<types,vars:{t,v | <t> <v>}; separator=", ">) {

14: <! Initialize member fields !>

15: <if(vars)><vars:{v | this.<v> = <v>};

16: separator=";\n">;<endif>

17: }

18:

19: <! Synchronized run method !>

20: @Override

21: public synchronized void run() {

22: <if(switchBlock)><switchBlock; separator="\n"><endif>

23: <if(syncBody)><syncBody; separator="\n"><endif>

24: terminate();

25: }

26:

27: <! Entry point of the program, e.g.,

28: public static void main(String[] args) { ... }

29: !>

30: <if(main)>}<\n><\n><main><else>}<endif>
31: >>

112

www.manaraa.com

Using the attributes of the ProcClass template in Listing 5.12, the ProcessJ compiler translates

foo to the Java class in Listing 5.13.

Listing 5.13: The PJProcess class generated from a template – Java class.

1: public static class _procfoocwI extends PJProcess {

2: protected PJChannel<Integer> _pd$out1;

3: ...

Note that the name of the procedure is modified so that the JVM can separate common names

that may (or may not) belong to the same compilation unit. In Listing 5.14, the attribute name

is then replaced with the modified name of the procedure in line 3. Additionally, all locals and

parameters are transformed into fields in the generated code in lines 5 and 8 (Listing 5.14). Line 5

takes in a list of types and variable names, namely, the parameters, and renders each value along

with the protected modifier. Similarly for line 8, however, the values being rendered are local

variables instead.

Listing 5.14: The template for a ProcessJ process – fields.

1: ProcClass(name, types, vars, ltypes, lvars, methods, main,

2: switchBlock, syncBody) ::= <<

3: public static class <name> extends PJProcess {

4:

5: <if(vars)><types,vars:{t,v | protected <t> <v>};

6: separator=";\n">;<\n><endif>
7:

8: <if(lvars)><ltypes,lvars:{t,v | protected <t> <v>};

9: separator=";\n">;<\n><endif>
10:

11: <if(methods)><methods; separator="\n"><\n><endif>
12: ...

To keep the state of all parameters between invocations (yields/resumes), the constructor in

Listing 5.15 must be defined for the generated class.

113

www.manaraa.com

Listing 5.15: The PJProcess class generated from a template – constructor.

4: public _procfoocwI(PJChannel<Integer> _pd$out1) {

5: this._pd$out1 = _pd$out1;

6: }

7: ...

In Listing 5.16, line 13 does exactly that. We generate a constructor for the class as follows: the

attribute name is replaced with the modified name of the procedure, followed by the same kind of

variables rendered in line 5. These values become the actual parameters passed to the constructor

of the procedure when it is dynamically allocated. As with lines 5 and 8 (Listing 5.14), line 13

takes in the same list of parameters. This time, however, each value is rendered with the this

keyword prefixed in line 15. This is done to avoid shadowing an instance field by a parameter.

Listing 5.16: The template for a ProcessJ process – constructor.

13: public <name>(<types,vars:{t,v | <t> <v>}; separator=", ">) {

14: <! Initialize member fields !>

15: <if(vars)><vars:{v | this.<v> = <v>};

16: separator=";\n">;<endif>

17: }

18: ...

Recall, the runLabel marks the starting point of the process being scheduled, and the resume()

method marks the point after the statement that suspended the process (a call to the yield() method).

In order to instantiate this class, we need to generate code for the run() method in Listing 5.17.

114

www.manaraa.com

Listing 5.17: The PJProcess class generated from a template – run method.

8: @Override

9: public synchronized void run() {

10: switch (this.runLabel) {

11: case 0: break;
12: case 1: resume(1); break;
13: default: break;
14: }

15:

16: _pd$out1.write(this, 4);

17: this.runLabel = 1;

18: yield();

19: label(1);

20:

21: terminate();

22: }

We do that in line 21 in Listing 5.18. The attribute SwithBlock in line 22 takes in a template

instance that renders a label and a number of resume points to which the label of the switch

statements jumps to. Furthermore, the attribute syncBody in line 23 takes in a template instance

that renders the body of the procedure, which gets evaluated during the traversal of a tree node.

The generated section of this code can be seen in Listing 5.17.

Listing 5.18: The template for a ProcessJ process – run method.

19: <! Synchronized run method !>

20: @Override

21: public synchronized void run() {

22: <if(switchBlock)><switchBlock; separator="\n"><endif>

23: <if(syncBody)><syncBody; separator="\n"><endif>

24: terminate();

25: }

All ProcessJ programs require a main procedure in order to run such as the one in Listing 5.19.

115

www.manaraa.com

Listing 5.19: The PJProcess class generated from a template from a template – main method.

40: public static void main(String[] _pd$args1) {

41: Scheduler scheduler = new Scheduler();

42: PJProcess.scheduler = scheduler;

43: (new simple._proc$main$arT(_pd$args1)).schedule();

44: PJProcess.scheduler.start();

45: }

In Listing 5.20, the attribute main in line 30 generates code for a procedure that represents the

entry point in a ProcessJ program. Like the attributes SwithBlock and SyncBody, main takes in a

template instance, namely, the template in Listing 5.21; however, it only generates code if it has a

value to render.

Listing 5.20: The template for a ProcessJ process – main procedure.

27: <! Entry point of the program, e.g.,

28: public static void main(String[] args) { ... }

29: !>

30: <if(main)>}<\n><\n><main><else>}<endif>
31: >>

Listing 5.21: The template for a ProcessJ process – main.

1: Main(class, name, types, vars) ::= <<

2: public static void main(<types,vars:{t,v | <t> <v>};

3: separator=", ">) {

4: Scheduler scheduler = new Scheduler();

5: PJProcess.scheduler = scheduler;

6: (new <class>.<name>(<vars; separator=", ">)).schedule();

7: PJProcess.scheduler.start();

8: }

5.3.2.3 Channel

ProcessJ supports four different kind of channels, where each channel sub-classes the abstract

template class (the mechanism for generic programming in Java) called PJChannel shown in

116

www.manaraa.com

Listing 5.22. This abstract class provides methods for constructing these different kind of

channels. Considering that the functionality of the reading and writing methods is ‘abstract’,

the sub-classes are responsible for providing the implementation in which each method oper-

ates. The following classes represent these four different kind of channels: PJOne2OneChannel,

PJOne2ManyChannel, PJMany2OneChannel, and PJMany2ManyChannel. The class diagram in

Figure 5.10 shows the relationship of PJChannel and its children.

Figure 5.10: Class diagram of the different channels in ProcessJ.

117

www.manaraa.com

Listing 5.22: The PJChannel class.

1: public abstract class PJChannel<T> {

2:

3: protected T data;

4: protected PJChannelType type;

5:

6: public abstract void write(PJProcess p, T data);

7:

8: public abstract T read(PJProcess p);

9:

10: public abstract boolean isReadyToRead(PJProcess p);

11:

12: public abstract boolean isReadyToWrite();

13:

14: // ************************************
15: // One-2-Many Channel: Shared reading end

16: // ************************************
17: public boolean claimRead(PJProcess p) {

18: return false;
19: }

20:

21: public void unclaimRead() {

22: // empty on purpose

23: }

24:

25: // ************************************
26: // Many-2-One Channel: Shared writing end

27: // ************************************
28: public boolean claimWrite(PJProcess p) {

29: return false;
30: }

31:

32: public void unclaimWrite() {

33: // empty on purpose

34: }

35: }

118

www.manaraa.com

This class contains seven fields: a protected data field in line 3 that holds the data to be trans-

mitted over the channel, a type in line 4 that describes the various forms of communication be-

tween two processes, a write() method in line 6 used by a sending process to write data across

the channel, a read() method in line 8 used by a receiving process to read data from a channel,

a isReadyToRead() method in line 10 used to check if a sending process is present at the other

end of the channel, a isReadyToWrite() method in line 12 used to check if a receiving process is

present, a claimRead() method in line 17 used by a receiving process to hold on to the reading-end

of the channel, an unclaimRead() method in line 21 used to release the reading-end of the channel,

a claimWrite() method in line 28 used by a sending process to hold on to a writing-end of the

channel, and, finally, an unclaimWrite() method in line 32 used to release this channel-end.

The implementation of the last four methods may change depending on the kind of channel

used. However, the definition of the first four remains the same as the receiver needs to set the

sender ready in order to be rescheduled and vice versa. Naturally, then, this will depend on whoever

gets their respective read or write operation first. One thing worth mentioning is that these channels

are drastically different from [95] – the previous experimental version of ProcessJ.

Channels are either used to connect a single writer process with a single reader (one-to-one),

connect a single writer process with any number of readers (one-to-many), connect any number of

writer processes with a single reader (many-to-one), connect any number of writer processes with

any number of readers (many-to-many). These channels are therefore used to construct networks

of communicating processes. It must be mentioned that a process should never be given a whole

channel – only the end that it needs.

5.3.2.4 One-to-One Channel

PJOne2OneChannel represents a one-to-one channel communication based on the correct imple-

mentation written by Sr. Pedersen and Chalmers in [78]. The definition of this class is shown in

Listing 5.23.

119

www.manaraa.com

Listing 5.23: The PJOne2OneChannel class.

1: public class PJOne2OneChannel<T> extends PJChannel<T> {

2:

3: protected PJProcess writer;

4:

5: protected PJProcess reader;

6:

7: public PJOne2OneChannel() {

8: writer = null;
9: reader = null;
10: type = PJChannelType.ONE2ONE;

11: }

12: ...

This class has a reader in line 3 and a writer in line 5, which hold references to the writing

and reading processes. The write() method in line 14 (Listing 5.24) and read() method in line 23

(Listing5.24) are the only methods provided to obtain the end of the channel by which writing and

reading operations are performed.

Listing 5.24: The PJOne2OneChannel class – write and read.

13: @Override

14: synchronized public void write(PJProcess p, T data) {

15: this.data = data; // set data on channel

16: writer = p; // register the writer

17: writer.setNotReady(); // set writer not ready

18: if (reader != null) // if a reader is there

19: reader.setReady(); // set it ready to run

20: }

21:

22: @Override

23: synchronized public T read(PJProcess p) {

24: writer.setReady(); // set writer ready

25: writer = null; // clear writer field

26: reader = null; // clear reader field

27: return data; // return data

28: }

29: ...

120

www.manaraa.com

Recall, channels are unbuffered and their operations are fully synchronous: the reader process

must wait for a matching writer to appear and vice versa. A writer process cannot continue past a

write operation if the reader is not at the other end of the channel. For example, consider a channel

communication in which the sending process arrives first. Since the receiving process is absent,

the sending process can copy its data to the channel, register itself as the writer on the channel,

set itself not-ready to run before returning control to the scheduler, and then wait for the receiving

process to appear at the other end of the channel – here, waiting implies setting the runLabel

used for resumption when the writer is rescheduled. When the reader finally appears, the writer

is set ready to run and is resumed when it appears at the front of the run queue. Similarly for a

reading process, it cannot move on if the writer process is not present. It should be mentioned that

these operations (read and write) can only be performed if the isReadyToRead() method in line 31

(Listing 5.25) and isReadyToWrite() method in line 42 (Listing 5.25) are invoked and return true,

indicating that both processes are present at each end of the channel, respectively.

Listing 5.25: The PJOne2OneChannel class – isReadyToRead and isReadyToWrite.

30: @Override

31: synchronized public boolean isReadyToRead(PJProcess p) {

32: if (writer != null) // if a writer is present

33: return true; // return true

34: else { // otherwise

35: reader = p; // register ’p’ as the reader

36: reader.setNotReady(); // set reader not ready

37: }

38: return false;
39: }

40:

41: @Override

42: public boolean isReadyToWrite() {

43: return true; // always ready to write

44: }

45: }

121

www.manaraa.com

Template Layout

A write operation on a write channel end in ProcessJ is shown in Listing 5.26, where c is a variable

of a channel type.

Listing 5.26: Example of a write statement.

4: c.write(4);

The write statement is converted to the Java code in Listing 5.30 using the ChanWriteStat

template.

Listing 5.27: The PJChannelOne2One class generated from a template – write.

36: _pd$out1.write(this, 4);

37: this.runLabel = 1;

38: yield();

39: label(1);

The template in Listing 5.28 takes in three attribute values: the name of the writing-end of a

channel variable, the statement to be transmitted across the channel, and a label used for resumption

when the writing process is rescheduled. In line 2, the attribute chanName is replaced with the

name of channel variable, the writer process. This variable is used to call the write() method. The

attribute writeExpr, following the this keyword within (), is replaced with the expression (or

value) transmitted over the channel. When the statement in line 2 is rendered and is later executed

by the compiler, the writer sends the data via the write method. In line 3, the attribute resume0 is

replaced with a label used to reschedule the writer process when the reader is present. This same

label is used again in line 5 to mark the point from which the writer process should restart.

122

www.manaraa.com

Listing 5.28: The template for a ProcessJ channel-write expression.

1: ChanWriteStat(chanName, writeExpr, resume0) ::= <<

2: <chanName>.write(this, <writeExpr>);

3: this.runLabel = <resume0>;

4: yield();

5: label(<resume0>);<\n>
6: >>

The expression to read from a channel in ProcessJ is var = c.read(), where var is the some

variable and c is a variable of a channel type. This is is illustrated in Listing 5.29.

Listing 5.29: Example of a read expression.

8: int x = in.read();

The read expression is translated to the Java code in Listing 5.30 using the ChannelReadExpr

template.

Listing 5.30: The PJChannelOne2One class generated from a template – read.

63: if (!_pd$in1.isReadyToRead(this)) {

64: this.runLabel = 1;

65: yield();

66: }

67:

68: label(1);

69: _ld$x1 = _pd$in1.read(this);
70: this.runLabel = 2;

71: yield();

72:

73: label(2);

74: io.println("x: " + _ld$x1);

75: terminate();

The template in Listing 5.31 takes in the name of the reading end of a channel variable, the

operand on the left hand side of the operator, a binary operator, and two labels used for resumption

123

www.manaraa.com

when the reader process is rescheduled to run again: the first is used when the writer is absent, and

the second is used after the reader reads data.

Listing 5.31: The template for a ProcessJ channel-read expression.

1: ChannelReadExpr(chanName, lhs, op, resume0, resume1) ::= <<

2: if (!<chanName>.isReadyToRead(this)) {

3: this.runLabel = <resume0>;

4: yield();

5: }

6:

7: label(<resume0>);

8: <if(lhs)><lhs> <op> <chanName>.read(this);
9: <else><chanName>.read(this);
10: <endif>

11: this.runLabel = <resume1>;

12: yield();

13:

14: label(<resume1>);

15: >>

In line 2, the attribute chanName is replaced with the name of the channel variable, namely,

the reader process. This variable is used to call the isReadyToRead() method when attempting

a read. For example, when the writer is not present, and the reader attempts to read (by calling

isReadyToRead) and receives false, the reader must yield and at the time of rescheduling it should

try again. Yielding at this point means setting the runLabel in line 3 with the value rendered by

the attribute resume0 – a label used to jump back to the code where the yield left off. This rendered

value is used again in line 7. In line 8, the attribute lhs is replaced with some variable that is used to

receive the data returned by read. Further still, on the same line, the attribute op is replaced with

some binary operator (typically, the assignment operator), and the attribute chanName is replaced

with the name of the reader process which is used to call read. Naturally, a call to the read()

method will return the data in the channel. Note, line 9 is only rendered if the value of the attribute

lhs in line 8 was null. Finally, in line 11, the attribute resume1 is replaced with the second label,

which is used in line 14 as a ‘courtesy’ yield for fairness. This courtesy yield forces the reader

process to go around the run queue at least once so other processes get run.

124

www.manaraa.com

5.3.2.5 One-to-Many Channel

A one-to-many channel communication is defined by the class called PJOne2ManyChannel (List-

ing 5.32). An instance of this class is safe for use by only one writer process and many readers.

Listing 5.32: The PJChannelOne2One class.

1: public class PJOne2ManyChannel<T> extends PJOne2OneChannel<T> {

2:

3: protected PJProcess readclaim = null;
4:

5: protected Queue<PJProcess> readQueue = new LinkedList<>();

6:

7: @Override

8: public synchronized boolean claimRead(PJProcess p) {

9: if (readclaim == null || readclaim == p) {

10: readclaim = p; // claim the channel

11: return true; // wait for reader

12: } else {

13: p.setNotReady(); // someone has claimed it

14: readQueue.add(p); // add reader to the queue

15: }

16: return false;
17: }

18:

19: @Override

20: public synchronized void unclaimRead() {

21: if (readQueue.isEmpty()) {

22: readclaim = null; // make the channel available

23: } else {

24: PJProcess p = readQueue.remove();

25: readclaim = p; // release channel

26: p.setReady(); // set process ready to run

27: }

28: }

29: }

A number of reading processes and only a writer can commit to this channel. However, at

any given time, only one reader and the writer will actually use the channel. This implies that all

reading processes must compete with each other in order to use the shared channel-end. Although

125

www.manaraa.com

a shared channel-end is used in the same way as a one-to-one channel, before a reader may use

the reading-end of the channel, the reader must first claim exclusive access to it. This can be done

using the claimRead() method in line 8. For example, when a reader manages to claim a shared

channel-end, this process will have exclusive rights to it. However, two things can happen – either

there is data and the process can read or it has to wait for the writer to appear. For the writer,

once a claim has been successful, the process proceeds like it did before in a one-to-one channel

communication; that is, the writer sets itself ready to run again because it was the reader who woke

the writer up. Once the communication is established, a reader must unclaim the shared channel-

end upon completing its read operation for other reading processes to use it. This is done using the

method unclaimRead() in line 20.

Template Layout

Listing 5.33 show an example of a reading shared channel-end.

Listing 5.33: Example of a shared reading-end of a channel.

1: public void reader(int id,

2: shared chan<int>.read in) {

3: while (true) {

4: int v; v = in.read();

5: println(id + ": " + v);

6: }

7: }

8: ...

The Java code in Listing 5.34 is generated by the ChannelOne2Many template.

126

www.manaraa.com

Listing 5.34: The PJChannelOne2Many class generated from a template – shared read.

43: if (!_pd$in2.claimRead(this)) {

44: this.runLabel = 1;

45: yield();

46: }

47: label(1);

48:

49: if (!_pd$in2.isReadyToRead(this)) {

50: this.runLabel = 2;

51: yield();

52: }

53:

54: label(2);

55: _ld$v1 = _pd$in2.read(this);
56: this.runLabel = 3;

57:

58: _pd$in2.unclaimRead();

59:

60: yield();

61: label(3);

The template in Listing 5.35 is similar to that of Listing 5.33 (ChanWriteStat), except for the

if-statement in line 3 and the unclaimRead statement that gets rendered in line 20. The attribute

chanName in line 3 is replaced with the name of a read process, which, once again, is used to call

the method claimRead() to aquire the end of the channel. The attribute resume0 in line 4 is replaced

with a label representing the point were the yield left off. When the call to claimRead is executed,

and if no other process has already claimed the channel, the rendered value of this attribute will be

used for resumption if a writer is not present or when data is available in the channel. Finally, line

20 is used to unclaim the channel.

127

www.manaraa.com

Listing 5.35: The template for a ProcessJ channel-read.

1: ChannelOne2Many(chanName, lhs, op, resume0, resume1,

2: resume2) ::= <<

3: if (!<chanName>.claimRead(this)) {

4: this.runLabel = <resume0>;

5: yield();

6: }

7: label(<resume0>);

8:

9: if (!<chanName>.isReadyToRead(this)) {

10: this.runLabel = <resume1>;

11: yield();

12: }

13:

14: label(<resume1>);

15: <if(lhs)><lhs> <op> <chanName>.read(this);
16: <else><chanName>.read(this);
17: <endif>

18: this.runLabel = <resume2>;

19:

20: <chanName>.unclaimRead();

21:

22: yield();

23: label(<resume2>);

24: >>

5.3.2.6 Many-to-One Channel

A many-to-one channel communication is defined by the class called PJMany2OneChannel (List-

ing 5.36). In contrast with the one-to-one channel, an instance of this class is safe for use by only

one reader process and multiple writers.

128

www.manaraa.com

Listing 5.36: The PJChannelOne2One class.

1: public class PJMany2OneChannel<T> extends PJOne2OneChannel<T> {

2:

3: protected PJProcess writeclaim = null;
4:

5: protected Queue<PJProcess> writeQueue = new LinkedList<>();

6:

7: @Override

8: public synchronized boolean claimWrite(PJProcess p) {

9: if (writeclaim == null || writeclaim == p) {

10: writeclaim = p; // claim the channel

11: return true; // wait for writer

12: } else {

13: p.setNotReady(); // someone has claimed it

14: writeQueue.add(p); // add writer to the queue

15: }

16: return false;
17: }

18:

19: @Override

20: public synchronized void unclaimWrite() {

21: if (writeQueue.isEmpty()) {

22: writeclaim = null; // make the channel available

23: } else {

24: PJProcess p = writeQueue.remove();

25: writeclaim = p; // release channel

26: p.setReady(); // set process ready to run

27: }

28: }

29: }

A number of writing processes and only a reader can commit to this channel. However, the

channel will only be used by one writer and the reader at any one time. Similar to how reading pro-

cesses compete with each other for a shared channel-end in a one-to-many channel communication,

writing processes also have to compete but for the shared writing-end of a channel. Furthermore,

a writer can attempt a claim on the shared channel-end by calling the claimWrite() method in line

8. When the claim is successful, and once the communication between the writer and the reader

is established, the writer must unclaim the claimed channel end by calling the umclaimWrite() in

129

www.manaraa.com

line 20 upon completing its write operation.

Template Layout

Listing 5.37 show an example of a writing shared channel-end.

Listing 5.37: Example of a shared writing-end of a channel.

1: public void writer(int id,

2: shared chan<int>.write out) {

3: int v = 0;

4: while (true) {

5: println(id + ": " + v);

6: out.write(v);

7: v = v + 1;

8: }

9: }

10: ...

The Java code in Listing 5.38 is generated by the ChannelMany2One template.

Listing 5.38: The PJChannelMany2One class generated from a template – shared write.

80: if (!_pd$out2.claimWrite(this)) {

81: this.runLabel = 1;

82: yield();

83: }

84: label(1);

85:

86: _pd$out2.write(this, _ld$v1);

87: this.runLabel = 2;

88:

89: yield();

90: label(2);

91:

92: _pd$out2.unclaimWrite();

The template in Listing 5.39, apart from lines 2 and 14, is similar to the one in Listing 5.28

(ChanWriteStat). The attribute chanName in line 2 is replaced with the name of a writer process,

130

www.manaraa.com

which is used to call the method claimRead(). A call to this method allows a writer to set itsef

not-ready to run if a reader is absent or to be ready for writing data. Line 20 is used to unclaim the

channel.

Listing 5.39: The template for a ProcessJ channel many-2-one.

1: ChannelMany2One(chanName, writeExpr, resume0, resume1) ::= <<

2: if (!<chanName>.claimWrite(this)) {

3: this.runLabel = <resume0>;

4: yield();

5: }

6: label(<resume0>);

7:

8: <chanName>.write(this, <writeExpr>);

9: this.runLabel = <resume1>;

10:

11: yield();

12: label(<resume1>);

13:

14: <chanName>.unclaimWrite();<\n>
15: >>

5.3.2.7 Many-to-Many Channel

The class PJMany2ManyChannel (Listing 5.40) defines a many-to-many channel communication.

This channel is safe for use by many writers and many readers. Like the one-to-many and many-

to-one channels, the only methods provided to obtain and release the end of the channel are: claim-

Read() and unclaimRead() methods, and claimWrite() and unclaimWrite() methods. Consequently,

this channel is handled in a similar manner using the ChannelOne2Many and ChannelMany2One

templates. It must be pointed out that we had to re-implement these methods (though their defini-

tions remain the same) as Java does not support multiple inheritance.

131

www.manaraa.com

Listing 5.40: The PJChannelMany2Many class – shared read.

1: public class PJMany2ManyChannel<T> extends PJOne2OneChannel<T> {

2:

3: // ************************************
4: // Shared reading end

5: // ************************************
6: protected PJProcess readclaim = null;
7:

8: protected Queue<PJProcess> readQueue = new LinkedList<>();

9:

10: @Override

11: public synchronized boolean claimRead(PJProcess p) {

12: if (readclaim == null readclaim == p) {

13: readclaim = p;

14: return true;
15: } else {

16: p.setNotReady();

17: readQueue.add(p);

18: }

19: return false;
20: }

Listing 5.41: The PJChannelMany2Many class – shared read cont.

21:

22: @Override

23: public synchronized void unclaimRead() {

24: if (readQueue.isEmpty()) {

25: readclaim = null;
26: } else {

27: PJProcess p = readQueue.remove();

28: readclaim = p;

29: p.setReady();

30: }

31: }

32:

132

www.manaraa.com

Listing 5.42: The PJChannelMany2Many class – shared write.

33: // ************************************
34: // Shared writing end

35: // ************************************
36: protected PJProcess writeclaim = null;
37:

38: protected Queue<PJProcess> writeQueue = new LinkedList<>();

39:

40: @Override

41: public synchronized boolean claimWrite(PJProcess p) {

42: if (writeclaim == null writeclaim == p) {

43: writeclaim = p;

44: return true;
45: } else {

46: p.setNotReady();

47: writeQueue.add(p);

48: }

49: return false;
50: }

Listing 5.43: The PJChannelMany2Many class – shared write cont.

52: @Override

53: public synchronized void unclaimWrite() {

54: if (writeQueue.isEmpty()) {

55: writeclaim = null;
56: } else {

57: PJProcess p = writeQueue.remove();

58: writeclaim = p;

59: p.setReady();

60: }

61: }

62: }

A declaration of shared channel-ends can be seen in Listing 5.44.

133

www.manaraa.com

Listing 5.44: Example of sharing both ends of a channel.

17: ...

18: public void main(string args[]) {

19: shared chan<int> c; // shared both ends

20: par {

21: reader(1, c.read);

22: reader(2, c.read);

23: reader(3, c.read);

24: writer(c.write);

25: writer(c.write);

26: }

27: }

5.3.2.8 Barrier

Unlike a channel, in which only two processes (a reader and a writer) can synchronize, a barrier

can be used to synchronize any number of processes. A barrier synchronization in ProcessJ is

represented by the Java class called PJBarrier (Listing 5.45).

Listing 5.45: The PJBarrier class.

1: public class PJBarrier {

2: public List<PJProcess> synced = new ArrayList<PJProcess>();

3: public int enrolled = 0;

4:

5: public PJBarrier() {

6: this.enrolled = 1;

7: }

8: ...

This class contains a number of methods that concurrent processes can be use to enroll, syn-

chronize, and resign. The class contains a counter in line 3 (Listing 5.45), called enrolled, which

represents the number or processes enrolled on a barrier object. When the sync() method in line

19 (Listing 5.47) is invoked, the counter in the barrier object is incremented by 1. This is done so

that when a process is added to the queue in line 2 (Listing 5.45), it can be set ready to run when

134

www.manaraa.com

every process enrolled on the barrier has called the sync() method. Once all processes have finally

enrolled on the barrier, this queue is emptied.

Listing 5.46: The PJBarrier class – enroll and resign.

9: public synchronized void enroll(int m) {

10: this.enrolled = this.enrolled + m - 1;

11: }

12:

13: public synchronized void resign() {

14: if (this.enrolled > 1) {

15: this.enrolled = this.enrolled - 1;

16: }

17: }

18: ...

A process may choose at any time to enroll or resign from any barrier. In order to gracefully

terminate every process enrolled on the barrier object, the finalize() method of a terminated pro-

cess is invoked. A call to the finalize() method results in an invocation to the resign() method in

line 5.46. When this invocation is made, the counter is decremented by 1. There are two important

observations that are worth making. First, the counter holds the number of processes enrolled on

the barrier object, including the barrier itself. Since the counter decrements after a process resigns,

the counter will never become zero. This is because the barrier is also included in the counter.

Therefore, when the counter becomes 1, this implies that all other processes except the process

originally declaring the barrier have resigned. Since this process has not resigned, the barrier can

still be used in this instance. Second, the enroll() method in line 9 is only used when the number

of processes that wish to enroll on a barrier is known ahead of time.

135

www.manaraa.com

Listing 5.47: The PJBarrier class – sync.

19: public synchronized void sync(PJProcess process) {

20: process.setNotReady();

21: synced.add(process);

22: if (synced.size() == enrolled) {

23: for (PJProcess p : synced) {

24: p.setReady();

25: }

26: synced.clear();

27: }

28: }

29: }

Template Layout

In ProcessJ, a barrier synchronization looks like the one in Listing 5.48.

Listing 5.48: Example of barrier.

1: b.sync();

The Java code in Listing 5.49 is generated by the BarrierDecl template.

Listing 5.49: The PJBarrier class generated from a template.

1: _pd$b1.sync(this);
2: this.runLabel = 1;

3: yield();

4: label(1);

The template in Listing 5.50 takes two attribute values. The attribute barrier in line 2 is re-

placed with some reference variable (a barrier object), which is used to call the sycn() method when

a process enrolls on the barrier. Recall, a counter (the number of processes enrolled) is kept in the

allocated PJBarrier object. This counter decrements every time the sync() method is invoked –

a call to sync sets the enrolled processes ready/not-ready to run. Finally, the attribute resume0 is

replaced with the point to return to when all processes have sync’d on the barrier.

136

www.manaraa.com

Listing 5.50: The template for a ProcessJ barrier.

1: SyncStat(barrier, resume0) ::= <<

2: <barrier>.sync(this);
3: this.runLabel = <resume0>;

4: yield();

5: label(<resume0>);

6: >>

5.3.2.9 Par

A par-block in ProcessJ is implemented as a PJPar class (Listing 5.51). The PJPar constructor

takes the number of processes and returns an object that represents the parallel composition of the

statements (sub-processes) inside the body of the par. A run of a par-block object terminates when,

and only if, all its sub-processes terminate.

Listing 5.51: The PJPar class.

1: public class PJPar {

2: private PJProcess process;

3: private int processCount;

4:

5: public PJPar(int processCount, PJProcess p) {

6: this.processCount = processCount;

7: this.process = p;

8: }

9:

10: public void setProcessCount(int count) {

11: this.processCount = count;

12: }

13:

14: public synchronized void decrement() {

15: processCount--;

16: if (processCount == 0) {

17: process.setReady();

18: }

19: }

20: }

137

www.manaraa.com

This class contains a counter in line 3, called processCount, that keeps track of how many

processes within the par-block object are still running. The counter is initialized when the par-

block object is created. This is done using the constructor in line 5. The process field in line 2

holds a reference to the process enclosing the par. This variable is used to set the process ready to

run when all of its sub-processes have terminated, thus, the process remains not-ready to run for

as long as one of its sub-processes is running. Once a sub-process has terminated, its finalized()

method is called to decrement the value stored in processCount via the decrement() method in line

14. When processCount reaches zero, the process in which the par-block appears is set ready to

run again.

Template Layout

A par-block in ProcessJ is a block of curly braces ({ }) with the par keyword prefixed. The

example in Listing 5.52 shows a par-block with two statements, namely the invocation of the foo()

and bar() procedures. In general, any number of processes can be executed in parallel. When the

program executes, the par-block will turn each statement into a process that will run concurrently

with the other. Note that a par-block also introduces a new scope, and they can be nested.

Listing 5.52: Example of a par-block.

1: ...

2: par {

3: foo();

4: bar();

5: }

6: ...

The Java code in Listing 5.53 is generated by the ParBlock template.

138

www.manaraa.com

Listing 5.53: The PJPar class generated from a template.

40: final PJPar _ld$par1 = new PJPar(2, this);
41:

42: new PJProcess() {

43: @Override

44: public synchronized void run() {

45: parExp._method$foo();

46: terminate();

47: }

48:

49: @Override

50: public void finalize() {

51: _ld$par1.decrement();

52: }

53: }.schedule();

54:

55: new PJProcess() {

56: @Override

57: public synchronized void run() {

58: parExp._method$bar();

59: terminate();

60: }

61:

62: @Override

63: public void finalize() {

64: _ld$par1.decrement();

65: }

66: }.schedule();

67:

68: if (_ld$par1.shouldYield()) {

69: this.runLabel = 1;

70: yield();

71: label(1);

72: }

139

www.manaraa.com

The template in Listing 5.54 takes in four attribute values in the following sequence: the name

of the process declaring the par-block, the number of process created inside the par, the statements

in the par, a jump label being the instruction after the par, and an optional barrier (or barriers) on

which the par-block’s processes are enrolled.

Listing 5.54: The template for a ProcessJ par-block.

1: ParBlock(name, count, process, body, jump, barrier) ::= <<

2: final PJPar <name> = new PJPar(<count>, <process>);

3: <if(barrier)><barrier:{b | .enroll(<count>)};
4: separator=";\n">;<endif>

5:

6: <if(body)><body; separator="\n\n"><endif>

7:

8: if (<name>.shouldYield()) {

9: this.runLabel = <jump>;

10: yield();

11: label(<jump>);

12: }<\n>
13: >>

The attribute name in line 2 is replaced with the process (a reference variable) in which the

par-block appears. On the same line, the attributes count and process are replaced with the number

of processes in the par-block and the this keyword (the process enclosing the par), respectively.

When this line is rendered, an instance of a PJPar is created using the parameters passed to the

constructor. If any barriers are declared, the attribute barrier in line 3 is replaced with one or more

reference variables representing each barrier. These variables are used to call the enroll() method

to enroll the sub-processes. In line 6, the attribute body is replaced with one or more derived

PJProcess classes while extending their implementation of the finalize() method to decrement the

par-block’s process counter. Finally, in line 9, the attribute jump is replaced with the resume point

after the yield – an address to jump to when this process is reschedule to run again.

5.3.2.10 Timer

A timer provides the current system time, which can be used to delay execution by calling time-

out() and as a guard for setting timeouts in an alt(ernation). A timer is represented by the Java

140

www.manaraa.com

class called PJTimer (Listing 5.55). This class implements the Java Delayed interface to mark

processes that are ready to be used after a certain delay.

Listing 5.55: The PJTimer class.

1: public class PJTimer implements Delayed {

2: private PJProcess process;

3:

4: private long delay;

5: private boolean killed = false;
6: public boolean started = false;
7: public boolean expired = false;
8: ...

A timer object can be started, terminated, or killed through its started (line 6), expired (line 7),

and killed (line 5) fields. The start() method in line 20 (Listing 5.56) sets the delay field in line 4

(Listing 5.55) with an absolute timeout value for a timer object, and the started field in line 6 (see

Listing 5.56) to true to indicate the specified wait time. It then inserts the timer object into the

timer queue of the scheduler. The expire() method in line 26 (Listing 5.56) is used by the scheduler

to indicate that a process’s delay has expired, namely its timer object. When a timer object expires,

the process with the expired timer object is set ready-to run, which the scheduler then executes

when it gets to the head of the queue.

Listing 5.56: The PJTimer class – start and expire methods.

20: public void start() throws InterruptedException {

21: this.delay = System.currentTimeMillis() + timeout;

22: PJProcess.scheduler.insertTimer(this);
23: started = true;
24: }

25:

26: public void expire() {

27: expired = true;
28: }

A process with a timeout call sets itself not-ready to run after its timer object has started.

Expiration occurs when the getProcess() method in line 38 (Listing 5.57) returns a reference to a

141

www.manaraa.com

process with an expired timer object. When this happens, the timer queue uses the returned value

as an indication of having a process whose delay expired furthest in the past. In this instance, the

process is set ready to run so that it can be scheduled in the future. Even though unexpired timer

objects are not removed from the delay queue unless their delay has expired, they can be killed off

when necessary (currently this is only done by an alt). Consider an alt with two guards: the first is

a guard with a read expression and the second is a timeout statement. If the first guard is marked

as ‘ready’, the alt will be set ready to run again. Therefore, the process declaring the alt will be

scheduled to run, and after some time it will yield. In the mean time, the timer object linked to this

process expires. This will result in setting the process ready to run again. If this process is stuck

in a read operation, it may get woken by a timer that timed out. To avoid this from happening, a

timer object must be killed off as it may set the process ready to run. In a situation such as this,

the timer object is killed by the kill() method in line 34 (Listing 5.57). Finally, timers can be read

much like a channel. In order to read the current time, the method read() in line 30 can be used.

Listing 5.57: The PJTimer class – read and kill methods.

30: public static long read() {

31: return System.currentTimeMillis();

32: }

33:

34: public void kill() {

35: killed = true;
36: }

37:

38: public PJProcess getProcess() {

39: if (killed) {

40: return null;
41: } else {

42: return process;

43: }

44: }

Template Layout

A timer is declared in a manner similar to a channel and a variable. For example, consider the

piece of ProcessJ code in Listing 5.58.

142

www.manaraa.com

Listing 5.58: Example of a timer declaration and timeout statement.

1: Timer t;

2: t.timeout(100);

The type of the variable declaration in line 1 (Listing 5.58) is determined in the generated Java

code as an instance of the PJTimer class. For the timeout call in line 2, the generated Java code in

Listing 5.59 is translated by the TimeOutStat template.

Listing 5.59: The PJTimer object generated from a template – timeout read.

36: _ld$t1 = new PJTimer(this, 100);

37: try {

38: _ld$t1.start();

39: setNotReady();

40: this.runLabel = 1;

41: yield();

42: } catch (InterruptedException e) {

43: System.out.println("An Interrupted exception " +

44: "occurred for a timer!");

45: }

46: label(1);

47: ...

The template in Listing 5.60 takes three parameters in the following sequence: the name of the

timer object, a delay used to block for a specified time period (in milliseconds), and a resume point

– the instruction after a yield statement. In line 2, the attribute name is replaced with the name of

the timer object. In addition to replacing this attribute, a call to the PJTimer constructor follows

the new operator on the same line. The attribute delay is replaced with the absolute timeout value,

which is passed to the constructor as a parameter to start the time of the timer object. When the

statement in line 2 is rendered, the compiler creates a timer object with the allocated delay time.

The attribute name in line 4 is replaced with the name of the timer object allocated in line 2 and is

used to call the start() method. A call to this method inserts the timer object into the timer queue

in a separate thread. Finally, the resume0 attribute in lines 6 is replaced with the label representing

143

www.manaraa.com

the resume point where the processes with the timer object should restart from when its delay has

expired.

Listing 5.60: The template for a ProcessJ timeout expression.

1: TimeoutStat(name, delay, resume0) ::= <<

2: <name> = new PJTimer(this, <delay>);

3: try {

4: <name>.start();

5: setNotReady();

6: this.runLabel = <resume0>;

7: yield();

8: } catch (InterruptedException e) {

9: System.out.println("An Interrupted exception occurred " +

10: "for a timer!");

11: }

12: label(<resume0>);

13: >>

To return the current system time in milliseconds as shown in Listing 5.61, the read() method

is used.

Listing 5.61: The PJTimer object generated from a template – timeout read.

48: ... = PJTimer.read();

The TimerReadExpr template in Listing 5.62 generates code that is used to read input from a

timer object. Since the read() method is static, an object is no required to make the call. In line 1,

the attribute name is replaced with the name of some local variable (where . . . is a place holder for

a variable), and the call to the read() method is used to return a long value representing the time

measured in milliseconds.

Listing 5.62: The template for a ProcessJ timer-read expression.

1: TimerReadExpr(name) ::= "<name> = PJTimer.read();"

144

www.manaraa.com

5.3.2.11 Record

A record is one way of structuring data in ProcessJ. It is represented by a class that implements

the Java interface called PJRecord (Listing 5.63), which is an empty interface that serves as the

‘parent’ record for all other records. The idea behind using this interface is to facilitate multiple

inheritance in ProcessJ. In contrast to Java, where a class can inherit methods, properties, and other

characteristics from another class, fields are subsequently added to a derived record in ProcessJ.

More specifically, there is no concept of partially inheriting fields, thus all inherited fields must

become part of the body of a derived record. This is necessary as it is the only way we can

approach multiple inheritance using the Java compiler.

Listing 5.63: The PJRecord class.

1: public interface PJRecord {

2: /* Empty on purpose */

3: }

Template Layout

The example in Listing 5.65, defines a new record called Car. This base record has two fields in

lines 2 and 3, namely, model and make. These fields are variables that are bundled up and stored

as part of the record in the generated Java class.

Listing 5.64: Example of a record definition.

1: public record Car {

2: string model;

3: string make;

4: }

The ProcessJ compiler generates the Java class in Listing 5.65 using the RecordClass tem-

plate.

145

www.manaraa.com

Listing 5.65: The PJRecord class generated from a template – Java class.

1: public static class Car implements PJRecord {

2: public String model;

3: public String make;

4:

5: public Car(String model, String make) {

6: this.model = model;

7: this.make = make;

8: }

9: }

In Listing 5.66, line 1 takes in the following attributes in sequence: a list of modifiers, the

name of the record being created, and a list of types and variable names. To enable multiple inher-

itance, the generated class must implement the PJRecord interface. In line 2, the list of modifiers

is rendered with the name of the record type, including the implements keyboard followed by

PJRecord. Naturally, appending the implements keyword to a class declaration forces the class

to adhere the contract built by the compiler at runtime. The public modifier is rendered, followed

by the list of types and variable names in line 4. To keep the state of all rendered fields, a con-

structor is generated in line 7. This constructor takes the same kind of variables rendered in line 4,

which are used to initialize the fields. In line 8, to avoid shadowing a field by a parameter in the

body of the constructor, each field is rendered with the the this keyboard prefixed.

Listing 5.66: The template for a ProcessJ record.

1: RecordClass(modifiers, name, types, vars) ::= <<

2: <if(modifiers)><modifiers; separator=" "> <else>protected
3: <endif>static class <name> implements PJRecord {

4: <if(vars)><types,vars:{t,v | public <t> <v>};

5: separator=";\n">;<\n><endif>
6:

7: public <name>(<types,vars:{t,v | <t> <v>}; separator=", ">) {

8: <if(vars)><vars:{v | this.<v> = <v>};

9: separator=";\n">;<endif>

10: }

11: }

146

www.manaraa.com

When a record is defined, it creates a user-defined Java class. However, no memory is al-

located. To dynamically allocate memory for a given record type, and work with it, the temple

RecordLiteral in is used to generated the Java code in Listing 5.68. Using the derived type

record Car defined in Listing 5.65, we can allocate memory for a record variable with the new

operator in ProcessJ. This can be seen in Listing 5.67.

Listing 5.67: Example of a record object created with the new operator.

1: Car car = new Car { mode = "Lancer", make = "Mitsubishi" };

Listing 5.68: The PJRecord class generated from a template – new operator.

42: ... = new Car("Lancer", "Mitsubishi");

The template in Listing 5.69 takes in two attribute values. The attribute type is replaced with

the name for the record type, and the attribute name is replaced with a reference variable, that is, a

variable that holds a reference to an object of type type. In Listing 5.68, the . . . is a place holder

for a variable that will hold a reference to an object of type Car. The attribute type following the

new operator is replaced with the name for the record type in line 2. Furthermore, the attribute vals

within () is replaced with a set of valid actual parameters. These parameters are eventually used

to initialize the fields of the record. For example, when line 2 is rendered and then executed by the

compiler, the new operator will make a call to the constructor of the class Car with the specified

parameters, "Lancer" and "Mitsubishi". It will then return a reference to the object it created,

that is, an object of type Car.

Listing 5.69: The template for a ProcessJ record literal.

1: RecordLiteral(type, vals) ::= <<

2: new <type>(<vals; separator=", ">)

3: >>

When a record object is created, its member(s) can be accessed directly. The syntax for that is

to inserts a dot (.) between the object name and the member name as shown in Listing 5.70.

147

www.manaraa.com

Listing 5.70: Example of access to a record’s member.

1: ...

2: println("model: " + car.model);

The generate Java code in Listing 5.71 is created using the RecordAccess template.

Listing 5.71: The PJRecord class generated from a template – member access.

42: ...

43: println("model: " + _ld$car1.model);

The template in Listing 5.72 takes in two attribute values: the name of the record whose mem-

ber we want to access, and the member name. The attribute name in line 1 is replaced with an

object name (a reference variable), and the attribute member is, as the name would suggest, re-

placed with the name of a field that belongs to the object. Using the previous code (Listing 5.70),

name is replaced with car and member is replaced with model in line 1. When this line is rendered,

the non-static field of car its access through its modified name ld$car1. Listing 5.71 shows the

section of code generated by the template.

Listing 5.72: The template for a ProcessJ record member access.

1: RecordAccess(name, member) ::= "<if(name)><name>.<member><endif>"

5.3.2.12 Protocols

A protocol is another way of structuring data in ProcessJ. Unlike a record, a protocol is a class that

encloses (encapsulates) its tags, where each tag extends the Java class called PJProtocolCase

(Listing 5.73). The PJProtocolCase class makes an existing protocol instance/value adopt a tag

whose data may vary in type from one instance to another. This allows protocols to provide support

for values that can be one of a number of tag-name cases, possibly each with different values and

types.

148

www.manaraa.com

Listing 5.73: The PJProtocolCase class.

1: public class PJProtocolCase {

2:

3: public String tag = null;
4: }

While single and multiple inheritance is allowed with protocols (Listing 5.74), the inheritance

of a protocol is different from that of Java. For example, a protocol that extends another protocol

can behave like the parent of the extended protocol. Further still, a protocol never inherits members

of another protocol. It instead describes a value that can be one of several types. This means that

the value of a protocol can only be determined by the tag it is initialized with. In other words, at

any given time, a protocol instance/value can contain no more than one tag no matter how many

tag members it has or inherits. This is further illustrated in Listing 5.75.

Listing 5.74: Example used to generate the PJProtocol class from a template.

1: public protocol P {

2: request : { int number; double amount; }

3: reply : { boolean status; }

4: }

5: public protocol P1 extends P {

6: deny : { int code; }

7: }

Listing 5.75: Example of access to a protocol’s tag.

11: ...

10: P1 p = new P1 { deny: code = 4 };

11:

12: switch (p) {

13: case request: println("request"); break;
14: case reply: println("reply"); break;
15: case deny: println("deny"); break;
16: }

149

www.manaraa.com

In listing 5.75, although we can match individual protocol values with a switch statement, only

tags from the derived protocol and its parent protocols can be used. The compiler will throw an

error if a tag that is not defined in either protocol is used in a case statement.

Template Layout

Protocols have a similar definition syntax to unions in C. An example of a protocol definition was

introduced in Listing 5.74. The ProtocolClass template is used to generate the appropriate Java

class for protocol P in Listing 5.76.

Listing 5.76: The PJRecord class generated from a template.

21: public static class P {

..: ...

41: }

The template in Listing 5.77 takes in three attribute values: a list of modifiers, the name of the

protocol being created, and a list of tag values. In line 2, the list of modifiers is rendered with the

name of the protocol. In this instance, the value being rendered is the name for the protocol type

P.

Listing 5.77: The template for a ProcessJ protocol.

1: ProtocolClass(modifiers, name, body) ::= <<

2: <if(modifiers)><modifiers; separator=" "> <else>protected
4: <endif>static class <name> {

5: <body; separator="\n\n">

6: }

Each member of a protocol can be of a different type, thus different classes need to be created

for each of them as shown in Listing 5.79. The ProtocolCase template in Listing 5.78 is used for

that purpose. This template takes in four attribute values: a list of modifiers, a tag name, and a list

of types and variable names associated with the tag being created. The list of modifiers is rendered

along with the name for the tag type, including the extends keyword followed by ProtocolCase

150

www.manaraa.com

in line 2. Extending this class enable us to use tags as place holders for their values when they

are dynamically created. In line 5, the list of tag values is turned into fields. A constructor for

the extended class is defined in line 8 while the attribute name is replaced with the name of the

class the constructor belongs to, namely the name of the tag member. In addition, the attribute vars

is replaced with a set of valid actual parameters. These parameters are used to initialize the tag

member fields. Finally, the this keyword is prefixed to the rendered values of the attribute vars in

line 10.

Listing 5.78: The template for a ProcessJ protocol type.

1: ProtocolCase(modifier, name, types, vars) ::= <<

2: <if(modifier)><modifier> <else>protected <endif>static class
3: <name> extends PJProtocolCase {

4:

5: <if(vars)><types,vars:{t,v | public <t> <v>};

6: separator=";\n">;<\n><endif>
7:

8: public <name>(<types,vars:{t,v | <t> <v>}; separator=", ">) {

9: <! Initialize member fields !>

10: <if(vars)><vars:{v | this.<v> = <v>};

11: separator=";\n">;<endif>

12: this.tag = "<name>";

13: }

14: }

151

www.manaraa.com

Listing 5.79: The PJRecord class generated from a template – tag name.

21: public static class P {

22: protected static class request extends PJProtocolCase {

23: public int number;

24: public double amount;

25:

26: public request(int number, double amount) {

27: this.number = number;

28: this.amount = amount;

29: this.tag = "request";

30: }

31: }

32:

33: protected static class reply extends PJProtocolCase {

34: public boolean status;

35:

36: public reply(boolean status) {

37: this.status = status;

38: this.tag = "reply";

39: }

40: }

41: }

42:

43: public static class P1 {

44: protected static class deny extends PJProtocolCase {

45: public int code;

46:

47: public deny(int code) {

48: this.code = code;

49: this.tag = "deny";

50: }

51: }

52: }

152

www.manaraa.com

When a protocol object is created, each member is allocated as if it is the only member of the

protocol. Furthermore, the lifetime of a protocol member (the values associated with a tag-name)

starts when it becomes active, that is, when it is created using a protocol literal. An example can

be seen in Listing 5.80.

Listing 5.80: The PJRecord class generated from a template – new operator.

1: P1 p = new P1 { deny: code = 4 };

The generated Java code in Listing 5.81 is created using the ProtocolLiteral template.

Listing 5.81: The PJRecord class generated from a template – creating a tag.

65: ... = new P1.deny(4);

The template in Listing 5.82 takes in three attribute values: the name for a protocol type, the

tag, and a list of tag values. In line 2, the attribute type is replaced with the name for the protocol

type that the tag member belongs to. Furthermore, the attribute tag is replaced with the name for

the tag member being accessed. It should be mentioned that the name for the tag member is the

name of the class surrounded by the class type of the protocol. Finally, the attribute vals is replaced

with the list of values passed to the constructor as declared by the code in Listing 5.79.

Listing 5.82: The template for a ProcessJ protocol literal.

1: ProtocolLiteral(type, tag, vals) ::= <<

2: new <type>.<tag>(<if(vals)><vals; separator=", "><endif>)

3: >>

A switch statement is used to compare a protocol’s tag in its expression with the expression

associated with each case label. As shown in Listing 5.83, we compare the switch expression,

namely p, with several case values.

153

www.manaraa.com

Listing 5.83: Example of access to a protocol’s tag value.

13: ...

14: switch (p) {

15: case request:

16: println("Done!");

17: break;
18: case reply:

19: println("status = " + p.status);

20: break;
21: }

The Java code in Listing 5.84 is generated by the ProtocolAccess template.

Listing 5.84: The PJProtocolCase class generated from a template – tag value.

66: switch(_ld$p1.tag) {

67: case "request":

68: io.println("Done!");

69: break;
70: case "reply":

71: io.println("status = " + (((P.reply) _ld$p1).status));

72: break;
73: }

The template in Listing 5.85 takes in four attribute values. The attribute name is replaced with

the name for the protocol type being used as the expression in the switch statement. The attribute

tag is replaced with the tag field (Listing 5.73), which is the case identifier that we compare to

the several case values in the switch. The attribute var is replaced with some reference variable, a

protocol case object. Finally, the attribute member is replaced with the case field whose value we

want to retrieve.

Listing 5.85: The template for a ProcessJ protocol member access.

1: ProtocolAccess(protocName, tag, var, member) ::= <<

2: <if(protocName)>(((<protocName>.<tag>) <var>).<member>)<endif>

3: >>

154

www.manaraa.com

Chapter 6

Implementation

The primary objective of this thesis project is to develop a compiler that generates reliable Java

code using CSP primitives translated into Java classes. Two example/test programs are used to

determine the correctness of the generated code and runtime components, and to get an idea of the

capabilities of the system I have implemented.

6.1 Full Adder

This test program implements a full eight-bit adder as a network of communicating processes, each

of which functions as a small Boolean logic gate. The layout of this network is very naı̈ve and

simple. It is composed of several gates such as AND, OR, NOT, NAND, and XOR. These gates

are grouped in order to form more complex components such as adders, multiplexers, etc. Such

components are used to transform input signal levels into output signal levels that are transmitted

to other network components on a continuous basis. The circuit diagram in Figure 6.1 can be

straightforward implemented except for the wiring. While wiring these components electrically

is trivial (mainly when diagram tools are used), they need to be modeled explicitly in ProcessJ as

point-to-point, synchronized, and unbuffered channel communication each feeding into a single

process. The ProcessJ implementation of a full one-bit adder diagram is shown in Listing 6.1 (see

Appendix H for the complete implementation). A total of 632 processes composed the complete

eight-bit adder. The generated Java code for a one-bit adder can be seen in Listing 6.2.

As mentioned, the run() method is responsible for executing the content of a ProcessJ process.

The par-block in Listing 6.1 turns each procedure into a process that runs concurrently with the

155

www.manaraa.com

other procedures in the par-block. When the run method of the ProcessJ oneBitAdder() procedure

is called by the scheduler (Listing 6.3), the entire par-block does not terminate until every process

of the block has terminated

Figure 6.1: A full one-bit adder diagram.

Listing 6.1: A one-bit adder implementation in ProcessJ.

1: public void oneBitAdder(chan<boolean>.read in1,

chan<boolean>.read in2,

chan<boolean>.read in3,

chan<boolean>.write result,

chan<boolean>.write carry) {

2: chan<boolean> a, b, c, d, e, f, g, h, i, j, k;

3: par{

4: muxGate(in1, a.read, b.write);

5: muxGate(in2, c.read, d.write);

6: xorGate(a.read, c.read, e.write);

7: muxGate(e.read, f.read, g.write);

8: muxGate(in3, h.read, i.write);

9: xorGate(f.read, h.read, result);

10: andGate(g.read, i.read, j.write);

11: andGate(b.read, d.read, k.write);

12: orGate(j.read, k.read, carry);

13: }

14: }

156

www.manaraa.com

Listing 6.2: The generated Java code for a one-bit adder – part 1.

1: public static class _proc$oneBitAdder extends PJProcess {

2: protected PJChannel<Boolean> _pd$in11;

3: protected PJChannel<Boolean> _pd$in22;

4: protected PJChannel<Boolean> _pd$in33;

5: protected PJChannel<Boolean> _pd$result4;

6: protected PJChannel<Boolean> _pd$carry5;

7:

8: protected PJChannel<Boolean> _ld$a1;

9: protected PJChannel<Boolean> _ld$b2;

10: protected PJChannel<Boolean> _ld$c3;

11: protected PJChannel<Boolean> _ld$d4;

12: protected PJChannel<Boolean> _ld$e5;

13: protected PJChannel<Boolean> _ld$f6;

14: protected PJChannel<Boolean> _ld$g7;

15: protected PJChannel<Boolean> _ld$h8;

16: protected PJChannel<Boolean> _ld$i9;

17: protected PJChannel<Boolean> _ld$j10;

18: protected PJChannel<Boolean> _ld$k11;

19:

20: public _proc$oneBitAdder(PJChannel<Boolean> _pd$in11,

PJChannel<Boolean> _pd$in22,

PJChannel<Boolean> _pd$in33,

PJChannel<Boolean> _pd$result4,

PJChannel<Boolean> _pd$carry5) {

21: this._pd$in11 = _pd$in11;

22: this._pd$in22 = _pd$in22;

23: this._pd$in33 = _pd$in33;

24: this._pd$result4 = _pd$result4;

25: this._pd$carry5 = _pd$carry5;

26: }

27:

157

www.manaraa.com

Listing 6.3: The generated Java code for a one-bit adder – part 2.

28: @Override

29: public synchronized void run() {

30: switch (this.runLabel) {

31: case 0: break;
32: case 1: resume(1); break;
33: default: break;
34: }

35:

36: _ld$a1 = new PJOne2OneChannel<Boolean>();

37: _ld$b2 = new PJOne2OneChannel<Boolean>();

38: _ld$c3 = new PJOne2OneChannel<Boolean>();

39: _ld$d4 = new PJOne2OneChannel<Boolean>();

40: _ld$e5 = new PJOne2OneChannel<Boolean>();

41: _ld$f6 = new PJOne2OneChannel<Boolean>();

42: _ld$g7 = new PJOne2OneChannel<Boolean>();

43: _ld$h8 = new PJOne2OneChannel<Boolean>();

44: _ld$i9 = new PJOne2OneChannel<Boolean>();

45: _ld$j10 = new PJOne2OneChannel<Boolean>();

46: _ld$k11 = new PJOne2OneChannel<Boolean>();

47: final PJPar _ld$par1 = new PJPar(9, this);
48:

49: (new fullAdder._proc$muxGate(_pd$in11, _ld$a1,

_ld$b2) {

50: @Override

51: public void finalize() {

52: _ld$par1.decrement();

53: }

54: }).schedule();

55:

56: (new fullAdder._proc$muxGate(_pd$in22, _ld$c3,

_ld$d4) {

57: @Override

58: public void finalize() {

59: _ld$par1.decrement();

60: }

61: }).schedule();

62:

158

www.manaraa.com

Listing 6.4: The generated Java code for a one-bit adder – part 3.

63: (new fullAdder._proc$xorGate(_ld$a1, _ld$c3,

_ld$e5) {

64: @Override

65: public void finalize() {

66: _ld$par1.decrement();

67: }

68: }).schedule();

69:

70: (new fullAdder._proc$muxGate(_ld$e5, _ld$f6,

_ld$g7) {

71: @Override

72: public void finalize() {

73: _ld$par1.decrement();

74: }

75: }).schedule();

76:

77: (new fullAdder._proc$muxGate(_pd$in33, _ld$h8,

_ld$i9) {

78: @Override

79: public void finalize() {

80: _ld$par1.decrement();

81: }

82: }).schedule();

83:

84: (new fullAdder._proc$xorGate(_ld$f6, _ld$h8,

_pd$result4) {

85: @Override

86: public void finalize() {

87: _ld$par1.decrement();

88: }

89: }).schedule();

90:

159

www.manaraa.com

Listing 6.5: The generated Java code for a one-bit adder – part 4.

91: (new fullAdder._proc$andGate(_ld$g7, _ld$i9,

_ld$j10) {

92: @Override

93: public void finalize() {

94: _ld$par1.decrement();

95: }

96: }).schedule();

97:

98: (new fullAdder._proc$andGate(_ld$b2, _ld$d4,

_ld$k11) {

99: @Override

100: public void finalize() {

101: _ld$par1.decrement();

102: }

103: }).schedule();

104:

105: (new fullAdder._proc$orGate(_ld$j10, _ld$k11,

_pd$carry5) {

106: @Override

107: public void finalize() {

108: _ld$par1.decrement();

109: }

110: }).schedule();

111:

112: if (_ld$par1.shouldYield()) {

113: this.runLabel = 1;

114: yield();

115: label(1);

116: }

117:

118: terminate();

119: }

111: }

160

www.manaraa.com

Figure 6.2 shows the output generated by the eight-bit adder program. The program takes a0

through a7, that is, 8-bits of input that constitute parts of a, where a0 is the lowest order bit and

a7 is the highest order bit. Then, b0 through b7 indicates the bits of the second input, where b0 is

again the lowest order bit of b and b7 is the highest.

> pj fullAdder

false true false false false true false false (InCarry:false)

+ true false true false true false true true

--

true true true false true true true true

Carry was: false

Figure 6.2: Full eight-bit adder output.

6.2 CommsTime

To further demonstrate the abilities of the runtime elements, another test program (one that is

commonly used for CSP frameworks) is commstime [72, 90]. This consists of building a simple

network with prefix, successor, delta, and consumer process that communicate over channels. Fig-

ure 6.3 illustrates the process network. The process Prefix starts the communication by sending

the initial integer value to Delta. This process then sends the value to Succ and to Consumer. Succ

increments the value by one and then sends it to Prefix, which in turn sends the value to delta. The

network operates as long as Delta is able to send the value over its first channel to Succ. Listing 6.6

shows the ProcessJ version of the CommsTime network. The output of this program, after 1 mil-

lion loops, is shown in Figure 6.4. Appendix I illustrates, in detail, how each of its processes is

implemented.

161

www.manaraa.com

Prefix Delta
Consumer

Succ

Figure 6.3: The CommsTime network.

Listing 6.6: CommsTime implementation in ProcessJ.

1: public void main(string args[]) {

2: chan<long> a,b,c,d;

3: par {

4: delta(d.read, a.write, b.write);

5: succ(b.read, c.write);

6: prefix(0, c.read, d.write);

7: consumer(a.read);

8: }

9: }

> pj commstime

...

999994

999995

999996

999997

999998

999999

1000000

Figure 6.4: CommsTime output.

162

www.manaraa.com

Chapter 7

Conclusion

In this thesis I presented ProcessJ, the reimplementation of the JVMCSP code generator and

through several examples demonstrated its practical application. Although I focused on the rewrit-

ing of the code generation and some parts of the runtime system, I also considered rewriting the

original command line parsing for the compiler.

The command line parsing library presented in this thesis uses a declarative approach to spec-

ifying command line options for the ProcessJ compiler. By looking at the features and problems

of other libraries, I designed the command line library to have the following key features: allow

for the configuration of a command line with little effort; enable parsing of command line argu-

ments into distinct constructs while being typed safe – currently, the constructs supported include

commands, options, and arguments; and capable of invoking functionality that is configured to run

based on the command line value.

In addition, I have presented the implementation of a code generation scheme and the runtime

system for ProcessJ. I described how the ProcessJ compiler generates code from the information

it obtains using the visitor pattern and the StringTempalte library, and demonstrated the rewriting

steps required to produce a compilable Java source file. For the runtime system, I utilized the

approach proposed by Sr. Pedersen and Chalmers in [78] of a one-to-one channel communication

for a multi-core cooperatively scheduled runtime system. This approach differs dramatically from

the one previously implemented in [95] as it was translated from ProcessJ to Java and subsequently

into CSP before being verified with the model checker FDR. Additionally, through this improved

approach, I was able to simplify significantly the amount of code involved for the remaining shared

163

www.manaraa.com

channel ends; that is, one-to-many, many-to-one, and many-to-many.

Furthermore, I have explained the reconstruction of CSP primitives, such as channels, process,

timers, barriers, and other process-oriented primitives, into object-oriented Java code. I also ex-

plained how the ProcessJ compiler enables process mobility using only code generation and a Java

bytecode rewriting technique. I described the steps involved in retaining the local state of a process

in between resumptions of code execution, and how the execution following the previous suspen-

sion point continuous with the same local state. The saving and restoration of local state work

with a simple cooperative scheduler responsible for executing processes in the JVM as previously

discussed.

Although ProcessJ and its implementation still do not provide full support for CSP-like features

that other more mature languages contain, I am optimistic about its future progress. I will conclude

this thesis with a number of future work to be addressed in the following chapter.

164

www.manaraa.com

Chapter 8

Future Work

Much work remains to be done to make ProcessJ a successful programming language. A number

of significant improvements can be made to the runtime system and code generator. I will mention

some of the most important improvements in this section.

8.1 Multi-core Scheduler

A multi-core scheduler for the ProcessJ runtime system will be developed in the near future. There

are extremely efficient runtime systems that support process-oriented programming for multi-core

architectures [85, 86], thus, we intend to use them to make full use of all available computing

resources in today’s multi-core systems. We are fully aware that writing a multi-core scheduler

is not a simple task. Although our runtime elements have already been designed for a single-

core scheduler with proper synchronized access, we believe such elements will not required many

changes in order to work with a multi-core scheduler. Alternatively, we intend to adapt some of

the techniques outline in [85] for a naı̈ve version of a multi-core scheduler if needed.

8.2 Run Queue

Currently, ProcessJ has a single run queue which holds both ready to run and not-ready to run

processes. To take advantage of a single-threaded scheduler, we could split the process queue into

two queues: the first for ready processes and the second for the not ready processes. When a not

ready process becomes ready, it is move to the ready queue to be scheduled to run. Similarly for

165

www.manaraa.com

ready processes, when they become not ready, they are moved to the not ready queue. This should

decrease the overhead of cycling through not ready processes as there is really no reason for that if

they cannot be run. The only drawback to this is that a lot of bookkeeping may be needed for the

runtime elements depending on the application. It is not known whether this would significantly

improve performance in a single-core scheduler. However, we should still explore this alternative.

8.3 Blocking I/O Calls

Blocking I/O can be a problem with a single-threaded scheduler. This is because when an external

I/O call blocks, the thread running the scheduler will block. One way to solve this problem is

using Java threads. We can allocate a new thread and place the blocking I/O call there so that it

can be executed separately by the JVM scheduler. For this to happen, we would need to have the

PJProcess class implement the runnable interface. This will allow the blocking code to be placed

in a new thread after its run() method is invoked.

8.4 Mobile processes

To implement mobile processes with polymorphic resumption interfaces [81] the code generator

needs the following changes:

• A number of additional parameter for setter methods must be added to the class generated

for the mobile process to support the polymorphic nature of the mobile processes.

• When the mobile process is invoked (it resumes) it needs to be wrapped in a par-block

• Support accessors must be implemented to determine the available procedure interface

8.5 Alternation

Alts were initially implemented as ‘busy-wait’. They cycled through the run queue but remained

ready to run without being resumed by the scheduler. Only when one of theirs guards became

‘ready’ were the processes declaring the alts ready to run again. We would like to improve them

by yielding with a not ready to run status and have one of their guards wake up the processes in

166

www.manaraa.com

which the alts appear – presently, a 2-way alternation (equivalent to an external choice in CSP) is

currently being formally verified using the model checker FDR tool. We expect to report on this

very soon. Finally, we would like to allow barriers in alt blocks, as well as nested alts.

8.6 Libraries

We plan to develop more sophisticated libraries for data structures and graphics, specially for

graphics since the majority of GUIs available in Java are not thread safe, a classic example being

Java’s Swing [27]. We would like to make graphical interfaces thread safe simply by conforming

to the parallel rules of CSP.

8.7 Command line library

The command line interpreter uses a very sophisticated way of correcting and suggesting candidate

options using Levenshtein edit distance among other techniques. These techniques may have many

potential uses including using some of the implementations to help special cases of the string

alignment problems and accelerating OCR post processing training by more easily being able to

perform ground truth verification [47, 46]. The alignment algorithm used there is elegant and was

very useful when developing a way to match suggestions to mistyped arguments in the command

line interpreter. Further work and standardization on the development of command line interpreters

like the one used for ProcessJ would go a great way to improve current command line interpreters

on popular programming languages.

8.8 Other Backends and Runtimes

Having different back-ends will allow developers to easily modify their programs. They will have

the advantage of using existing libraries and frameworks from different languages while retaining

backward compatibility. This will encourage code reuse and code sharing when writing process-

oriented programs in ProcessJ. As a result, we are planning on developing new back-ends targeting

different execution architectures, such as C and C++ (which have the same semantics as Java

for well-known sequential constructs), and JavaScript (as an online tool). However, a new C++

167

www.manaraa.com

runtime system will be developed as part of a master thesis project. We expect to be able to report

on this in the very near future.

168

www.manaraa.com

Appendix A

List of Primitive Types in ProcessJ

In Java, the atomic types are: boolean, byte, short, char, int, float, long, double. ProcessJ uses

the same names, but in addition, string is an atomic type. In addition to the regular atomic types,

ProcessJ has an additional number (currently two) of atomic types inherited from occam-π, namely

timers and barriers. Table A.1 contains a list of the primitive types.

Table A.1: List of primitive types in ProcessJ

Name Representation Range

boolean {true, false}
byte 8-bit signed 2’s com-

plement
{-128,. . .,127}

short 16-bit signed 2’s com-
plement

{-32768,. . .,32767}

char 16-bit Unicode charac-
ter

{’\u0000’,. . . ,’\ufff’}

int 32-bit signed 2’s com-
plement

{−231, . . . , 231 − 1}

long 64-bit signed 2’s com-
plement

{−263, . . . , 263 − 1}

float single-precision 32-bit
IEEE 754 floating point

±1.18× 10−38 - ±3.4× 1038

double double-precision 64-bit
IEEE 754 floating point

±2.23−308 - ±1.80× 10308

string —
barrier —
timer —

169

www.manaraa.com

Appendix B

List of Modifiers Available in ProcessJ

ProcessJ currently supports six different modifiers. Modifiers are keywords that can be placed in

front of type and variable declarations. Not all modifiers can be used on all types. The list of

modifiers can be seen in Table B.1

Table B.1: List of modifiers in ProcessJ

Modifier Description

mobile The mobile modifier can only be used on procedure types,
channel, and channel end declarations. A mobile process is
a process that can be communicated in a channel that car-
ries the appropriate procedure type. A mobile channel is
a channel whose ends can be sent over a channel, and a
mobile channel end denoted the channel ends of a mobile
channel.

const The modifier const can only be used to declare con-
stants at the compilation unit level like const double PI

= 3.1415 or it can be used to declare a local variable or
even a parameter constant. A constant local cannot be as-
signed apart from its initializer, and a constant parameter
cannot be assigned to at all apart from the value it gets when
the procedure is called.

native The native modifier does not appear in normal code. It is
used only when writing native libraries for ProcessJ.

170

www.manaraa.com

public Only top-level types (that is, types declared outside proce-
dures) can use the public modifier. The public modifier
makes a type available to anyone who either imports the file
in which it is declared or who implicitly causes an import
by referring to the type using the :: operator.

private Like public, private is a top-level modifier. Any type
declared private can only be accessed within the compi-
lation unit in which it was declared.

protected Again, protected is a top-level modifier only. A
protected type is accessible only within the package.

171

www.manaraa.com

Appendix C

Monitor example in Java

Listing C.1: Example of a locking mechanism in Java.

1: public class Sample {

2: public Object lock = new Object();

3:

4: public void f() {

5: synchronized(lock) {

6: // lock shared state

7: }

8: }

9: }

172

www.manaraa.com

Listing C.2: Byte code generated by the Java compiler.

1: Compiled from "Sample.java"

2: public class Sample {

3: public java.lang.Object lock;

4:

5: public Sample();

6: Code:

7: 0: aload_0

8: 1: invokespecial #1 // Method

9: java/lang/Object."<init>":()V

10: 4: aload_0

11: 5: new #2 // class java/lang/Object

12: 8: dup

13: 9: invokespecial #1 // Method

14: java/lang/Object."<init>":()V

15: 12: putfield #3 // Field lock:Ljava/lang/Object;

16: 15: return
17:

18: public void f();

19: Code:

20: 0: aload_0

21: 1: getfield #3 // Field lock:Ljava/lang/Object;

22: 4: dup

23: 5: astore_1

24: 6: monitorenter

25: 7: aload_1

26: 8: monitorexit

27: 9: goto 17

28: 12: astore_2

29: 13: aload_1

30: 14: monitorexit

31: 15: aload_2

32: 16: athrow

33: 17: return
34: Exception table:

35: from to target type

36: 7 9 12 any

37: 12 15 12 any

38: }

173

www.manaraa.com

Appendix D

Complete ‘kill’ Implementation

1: public void integrate(chan<int>.read in,

2: chan<int>.write out,

3: chan<boolean>.read killMe,

4: chan<boolean>.write killConsumer) {

5: int total = 0;

6: boolean ok = true;
7: while (ok) {

8: boolean y;

9: int x;

10: pri alt {

11: y = killMe.read() :

12: {

13: killConsumer.write(true);
14: ok = false;
15: }

16: x = in.read() :

17: {

18: total = total + x;

19: out.write(total);

20: }

21: }

22: }

23: }

24:

25: public void producer(chan<int>.write out,

26: chan<boolean>.read killMe,

27: chan<boolean>.write killIntegrate) {

28: int i = 0;

174

www.manaraa.com

29: boolean ok = true;
30: while (ok) {

31: boolean b;

32: alt {

33: b = killMe.read(): {

34: ok = false;
35: killIntegrate.write(true);
36: }

37: skip: {

38: out.write(i);

39: i=i+1;

40: }

41: }

42: }

43: }

44:

45: public void consumer(chan<int>.read in,

46: chan<boolean>.read killMe) {

47: boolean ok = true;
48: while (ok) {

49: int x;

50: boolean b;

51: pri alt {

52: x = in.read() : {

53: println(x);

54: }

55: b = killMe.read(): {

56: ok = false;
57: }

58: }

59: }

60: }

61:

62: public void killer(chan<boolean>.write killProduce) {

63: timer t;

64: t.timeout(3);

65: killProduce.write(true);
66: }

67:

68: public void main(string args[]) {

69: chan<int> in, out;

70: chan<boolean> killProduce, killIntegrate, killConsume;

175

www.manaraa.com

Listing D.1: Correct kill implementation.

71: par {

72: produce(in.write, killProduce.read, killIntegrate.write);

73: integrate(in.read, out.write, killIntegrate.read,

74: killConsume.write);

75: killer(killProduce.write);

76: consume(out.read, killConsume.read);

77: }

78: }

176

www.manaraa.com

Appendix E

An Example of Threads Executing In and

Out of Objects

1: interface I {

2: public void h() ;

3: }

4:

5: class B implements I {

6: public void h() {

7: test.a.g();

8: }

9: }

10:

11: class A {

12: private int i = 0;

13:

14: synchronized void f(I b) {

15: int j = i;

16: b.h();

17: j = j + 1;

18: i = j;

19: }

20:

21: synchronized void g() {

22: int j = i;

23: j = j + 1;

24: i = j;

25: }

177

www.manaraa.com

Listing E.1: Threads executing in and out of objects.

26:

27: public int get() {

28: return i;

29: }

30: }

31:

32: public class test {

33: public static A a;

34:

35: public static void main(String args[]) {

36: a = new A();

37: B b = new B();

38: a.f(b);

39:

40: System.out.println(a.get());

41: }

42: }

178

www.manaraa.com

Appendix F

A Command Line Example Program

1: @Parameters(name="calc")

2: public class Example extends Command {

3: @Option(names="-op1",

4: help="first operand",

5: split="=",

6: metavar="<num>",

7: arity="1",

8: handlers=OperandParser.class)

9: public int op1;

10: @Option(names="-op2",

11: help="second operand",

12: metavar="<num>",

13: arity="1",

14: handlers=OperandParser.class)

15: public int op2;

16: @Option(names="-add",

17: help="Adds two numbers",

18: defaultValue="false")

19: public boolean addition;

20: @Option(names="-sub",

21: help="subtract two numbers")

22: public boolean subtraction;

23: @Option(names="-help",

24: help="Show this help message and exit",

25: defaultValue="false")

26: public boolean help;

27: public static void main(String[] args) {

28: CLIBuilder builder =

179

www.manaraa.com

Listing F.1: An example of a command line program.

new CLIBuilder().addCommand(Example.class);

29: Example sp = null;
30: try {

31: builder.handleArgs("-add -op1=13 -op2 34".split(" "));

32: sp = builder.getCommand(Example.class);

33: } catch(Exception e) {

34: System.out.println(e.getMessage());

35: System.exit(1);

36: }

37: if (sp.addition) {

38: System.out.println(String.format("Add operation: " +

39: "%s + %s = %s", sp.op1, sp.op2, (sp.op1 + sp.op2)));

40: } else if (sp.subtraction) {

41: System.out.println(String.format("Add operation: " +

42: "%s + %s = %s", sp.op1, sp.op2, (sp.op1 + sp.op2)));

43: }

44: if (sp.help) {

45: Formatter formatHelp = new Formatter(builder);

46: System.out.println(formatHelp.buildUsagePage());

47: System.exit(0);

48: }

49: }

50: public static class OperandParser
extends OptionParser<Integer> {

51: public OperandParser(String optionName) {

52: super(optionName);
53: }

54: @Override

55: public Integer parseValue(String value)

throws Exception {

56: try {

57: return Integer.parseInt(value);

58: } catch (NumberFormatException e) {

59: throw new NumberFormatException(String.format(

60: "’%s’ could not convert ’%s’ to "

61: + "Integer.", optionName, value));

62: }

63: }

64: }

65: }

180

www.manaraa.com

Appendix G

List of Options and Parameters in ProcessJ

Table G.1: List of options and parameters in ProcessJ

Type Name Parameters Default Value Meaning

command pjc option /
argument

— The primary command
in ProcessJ is this com-
mand

option -cli boolean false ProcessJ command line
interpreter and conven-
tions

option -console-ansi-

code

integer 0 Try and use color on
terminals that support
ANSI espace codes

option -g or
-debug

boolean false Generate all debugging
info

option -error-code integer 0 What error code infor-
mation do you want?

option -h or
-help

boolean false Show this help message
and exit

option -I or
-include

string ProcessJ default
directory

Override the default in-
clude directory which is
set to be the “include”
subdirectory of the Pro-
cessJ directory

option -info string null Provide additional in-
formation about a spe-
cific command or op-
tion

181

www.manaraa.com

option -logfile file null Use given file for log
option -sts boolean false Dump global symbol

table structure
option -t or

-target

enum JVM Specify the target
language. C: C source
code is written, com-
piled, and linked with
the CSSP runtime;
C++: C++ source
code is generated and
compiled into an ex-
ecutable; JVM: JVM
class files are written
and compiled; JS:
JavaScript is written

option -V or
-verbose

boolean false Output messages of the
exact sequence of com-
mands used to compile
a ProcessJ program

option -v or
-version

boolean false Print version informa-
tion and exit

option -visit-all boolean false Generate all parse tree
visitors (not default)

argument args file null The file (or files) to
compile

182

www.manaraa.com

Appendix H

A Full 8-bit Adder Implementation in

ProcessJ

1: public void main(string args[]) {

2: chan<boolean> a0, a1, a2, a3, a4, a5, a6, a7;

3: chan<boolean> b0, b1, b2, b3, b4, b5, b6, b7;

4: chan<boolean> r0, r1, r2, r3, r4, r5, r6, r7;

5: chan<boolean> inCarry, outCarry;

6:

7: boolean p0, p1, p2, p3, p4, p5, p6, p7;

8: boolean q0, q1, q2, q3, q4, q5, q6, q7;

9:

10: // Addition results

11: boolean f0, f1, f2, f3, f4, f5, f6, f7;

12: boolean c, inC;

13:

14: // Selected numbers

15: p0 = false;
16: p1 = false;
17: p2 = true;
18: p3 = false;
19: p4 = false;
20: p5 = false;
21: p6 = true;
22: p7 = false;
23:

24: q0 = true;
25: q1 = true;

183

www.manaraa.com

26: q2 = false;
27: q3 = true;
28: q4 = false;
29: q5 = true;
30: q6 = false;
31: q7 = true;
32:

33: par {

34: // First number

35: a7.write(p7);

36: a6.write(p6);

37: a5.write(p5);

38: a4.write(p4);

39: a3.write(p3);

40: a2.write(p2);

41: a1.write(p1);

42: a0.write(p0);

43:

44: // Second number

45: b7.write(q7);

46: b6.write(q6);

47: b5.write(q5);

48: b4.write(q4);

49: b3.write(q3);

50: b2.write(q2);

51: b1.write(q1);

52: b0.write(q0);

53:

54: // Initial carry

55: inCarry.write(inC);

56:

57: eightBitAdder(a0.read, a1.read, a2.read, a3.read,

58: a4.read, a5.read, a6.read, a7.read,

59: b0.read, b1.read, b2.read, b3.read,

60: b4.read, b5.read, b6.read, b7.read,

61: inCarry.read, r0.write, r1.write,

62: r2.write, r3.write, r4.write, r5.write,

63: r6.write, r7.write, outCarry.write);

64:

65: f0 = r0.read();

66: f1 = r1.read();

67: f2 = r2.read();

184

www.manaraa.com

68: f3 = r3.read();

69: f4 = r4.read();

70: f5 = r5.read();

71: f6 = r6.read();

72: f7 = r7.read();

73:

74: c = outCarry.read();

75: }

76:

77: println(" " + p7 + " " + p6 + " " + p5 + " " + p4 + " " +

p3 + " " + p2 + " " + p1 + " " + p0 + " (InCarry:" + inC +

")");

↪→

↪→

78: println("+ " + q7 + " " + q6 + " " + q5 + " " + q4 + " " +

q3 + " " + q2 + " " + q1 + " " + q0);↪→

79: println("----------");

80: println(" " + f7 + " " + f6 + " " + f5 + " " + f4 + " " +

f3 + " " + f2 + " " + f1 + " " + f0);↪→

81: println("Carry was: " + c);

82: }

83:

84: public void notGate(chan<boolean>.read in, chan<boolean>.write
out) {↪→

85: boolean x = false;
86: x = in.read();

87: out.write(!x);

88: }

89:

90: public void orGate(chan<boolean>.read in1, chan<boolean>.read
in2, chan<boolean>.write out){↪→

91: boolean x = false, y = false;
92: par{

93: x = in1.read();

94: y = in2.read();

95: }

96: out.write(x y);

97: }

98:

99: public void andGate(chan<boolean>.read in1, chan<boolean>.read
in2, chan<boolean>.write out) {↪→

100: boolean x = false, y = false;
101: par {

102: x = in1.read();

185

www.manaraa.com

103: y = in2.read();

104: }

105: out.write(x && y);

106: }

107:

108: public void nandGate(chan<boolean>.read in1, chan<boolean>.read
in2, chan<boolean>.write out) {↪→

109: chan<boolean> a;

110: par {

111: andGate(in1, in2, a.write);

112: notGate(a.read, out);

113: }

114: return;
115: }

116:

117: public void muxGate(chan<boolean>.read in, chan<boolean>.read
out1, chan<boolean>.write out2) {↪→

118: boolean x = false; x = in.read();

119: par {

120: out1.write(x);

121: out2.write(x);

122: }

123: return;
124: }

125:

126: public void xorGate(chan<boolean>.read in1, chan<boolean>.read
in2, chan<boolean>.write out){↪→

127: chan<boolean> a, b, c, d , e, f, g, h, i;

128: par {

129: muxGate(in1, a.read, b.write);

130: muxGate(in2, c.read, d.write);

131: nandGate(b.read, d.read, e.write);

132: muxGate(e.read, f.read, g.write);

133: nandGate(a.read, f.read, h.write);

134: nandGate(c.read, g.read, i.write);

135: nandGate(h.read, i.read, out);

136: }

137: }

138:

139: public void oneBitAdder(chan<boolean>.read in1,

chan<boolean>.read in2, chan<boolean>.read in3,

chan<boolean>.write result, chan<boolean>.write carry) {

↪→

↪→

186

www.manaraa.com

140: chan<boolean> a, b, c, d, e, f, g, h, i, j, k;

141: par{

142: muxGate(in1, a.read, b.write);

143: muxGate(in2, c.read, d.write);

144: xorGate(a.read, c.read, e.write);

145: muxGate(e.read, f.read, g.write);

146: muxGate(in3, h.read, i.write);

147: xorGate(f.read, h.read, result);

148: andGate(g.read, i.read, j.write);

149: andGate(b.read, d.read, k.write);

150: orGate(j.read, k.read, carry);

151: }

152: }

153:

154: public void fourBitAdder(chan<boolean>.read inA0,

chan<boolean>.read inA1, chan<boolean>.read inA2,

chan<boolean>.read inA3, chan<boolean>.read inB0,

chan<boolean>.read inB1, chan<boolean>.read inB2,

chan<boolean>.read inB3, chan<boolean>.read inCarry,

chan<boolean>.write result0, chan<boolean>.write result1,

chan<boolean>.write result2, chan<boolean>.write result3,

chan<boolean>.write carry) {

↪→

↪→

↪→

↪→

↪→

↪→

↪→

155: chan<boolean> a, b, c;

156: par {

157: oneBitAdder(inA0, inB0, inCarry, result0, a.write);

158: oneBitAdder(inA1, inB1, a.read, result1, b.write);

159: oneBitAdder(inA2, inB2, b.read, result2, c.write);

160: oneBitAdder(inA3, inB3, c.read, result3, carry);

161: }

162: }

163:

187

www.manaraa.com

Listing H.1: An 8-bit adder implementation in ProcessJ.

164: public void eightBitAdder(chan<boolean>.read inA0,

chan<boolean>.read inA1, chan<boolean>.read inA2,

chan<boolean>.read inA3, chan<boolean>.read inA4,

chan<boolean>.read inA5, chan<boolean>.read inA6,

chan<boolean>.read inA7, chan<boolean>.read inB0,

chan<boolean>.read inB1, chan<boolean>.read inB2,

chan<boolean>.read inB3, chan<boolean>.read inB4,

chan<boolean>.read inB5, chan<boolean>.read inB6,

chan<boolean>.read inB7, chan<boolean>.read inCarry,

chan<boolean>.write result0, chan<boolean>.write result1,

chan<boolean>.write result2, chan<boolean>.write result3,

chan<boolean>.write result4, chan<boolean>.write result5,

chan<boolean>.write result6, chan<boolean>.write result7,

chan<boolean>.write outCarry) {

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

165: chan<boolean> a;

166: par {

167: fourBitAdder(inA0, inA1, inA2, inA3,

168: inB0, inB1, inB2, inB3,

169: inCarry, result0, result1,

170: result2, result3, a.write);

171: fourBitAdder(inA4, inA5, inA6, inA7,

172: inB4, inB5, inB6, inB7,

173: a.read,

174: result4, result5, result6,

175: result7, outCarry);

176: }

177: }

188

www.manaraa.com

Appendix I

CommsTime Implementation in ProcessJ

1: public void prefix(long n, chan<long>.read in,

2: chan<long>.write out) {

3: out.write(n);

4: long l = 0;

5: while (l < 1000000) {

6: l = in.read();

7: out.write(l);

8: }

9: }

10:

11: public void succ(chan<long>.read in, chan<long>.write out) {

12: long l = 0;

13: while (l < 999999) {

14: l = in.read();

15: out.write(l+1);

16: }

17: }

18:

19: public void delta(chan<long>.read in, chan<long>.write out1,

20: chan<long>.write out2) {

21: long l = 0;

22: while (l < 1000000) {

23: l = in.read();

24: par {

25: out1.write(l); // consumer

26: if (l != 1000000)

27: out2.write(l); // succ

28: }

189

www.manaraa.com

Listing I.1: CommsTime code.

29: }

30: }

31:

32: public void consumer(chan<long>.read in) {

33: long l = 0;

34: while (l < 1000000) {

35: l = in.read();

36: println(l);

37: }

38: }

39:

40: public void main(string args[]) {

41: chan<long> a,b,c,d;

42: par {

43: delta(d.read, a.write, b.write);

44: succ(b.read, c.write);

45: prefix(0, c.read, d.write);

46: consumer(a.read);

47: }

48: }

190

www.manaraa.com

Bibliography

[1] 3D Blood Clotting - Programming Languages and Systems Research Group Wiki. https:
//www.cs.kent.ac.uk/research/groups/plas/wiki/3D_Blood_Clotting. (Ac-
cessed on 03/31/2019).

[2] Akka anti-patterns: shared mutable state - manuel bernhardt. https://manuel.

bernhardt.io/2016/08/02/akka-anti-patterns-shared-mutable-state/. (Ac-
cessed on 03/30/2019).

[3] Akka: build concurrent, distributed, and resilient message-driven applications for Java and
Scala — Akka. https://akka.io/. (Accessed on 03/20/2019).

[4] Argparse — Parser for command-line options, arguments and sub-commands — Python
3.7.2 documentation. https://docs.python.org/3/library/argparse.html. (Ac-
cessed on 6/17/2018).

[5] args4j parent - How to use Args4J. http://args4j.kohsuke.org/sample.html. (Ac-
cessed on 04/24/2019).

[6] ASM 4.0 A Java bytecode engineering library. https://asm.ow2.io/asm4-guide.pdf.
(Accessed on 04/21/2019).

[7] C++CSP2. https://www.cs.kent.ac.uk/projects/ofa/c++csp/. (Accessed on
03/20/2019).

[8] CLAJR. http://clajr.sourceforge.net/. (Accessed on 04/24/2019).

[9] Commons CLI Home. https://commons.apache.org/proper/commons-cli/. (Ac-
cessed on 12/27/2018).

[10] Communicating Haskell Processes. https://www.cs.kent.ac.uk/projects/ofa/

chp/. (Accessed on 03/20/2019).

[11] Communicating Sequential Processes for Java (JCSP). https://www.cs.kent.ac.uk/

projects/ofa/jcsp/. (Accessed on 01/17/2019).

[12] cspbook.pdf. http://www.usingcsp.com/cspbook.pdf. (Accessed on 03/14/2019).

[13] Erlang Programming Language. https://www.erlang.org/. (Accessed on 03/19/2019).

[14] FDR4 - The CSP Refinement Checker. https://www.cs.ox.ac.uk/projects/fdr/.

191

www.manaraa.com

(Accessed on 03/16/2019).

[15] Getopt (The GNU C Library). https://www.gnu.org/software/libc/manual/html_

node/Getopt.html. (Accessed on 6/7/2018).

[16] iwomp2005 tutorial openmp rvdp.pdf. http://www.nic.uoregon.edu/iwomp2005/

iwomp2005_tutorial_openmp_rvdp.pdf. (Accessed on 03/17/2019).

[17] JArgs command line option parsing suite for Java. http://jargs.sourceforge.net/.
(Accessed on 04/24/2019).

[18] JOpt Simple - a Java command line parsing library JOpt Simple. https://jopt-simple.
github.io/jopt-simple/. (Accessed on 04/24/2019).

[19] JSAP: Java Simple Argument Parser. http://www.martiansoftware.com/jsap/. (Ac-
cessed on 04/24/2019).

[20] Message Passing Interface (MPI). https://computing.llnl.gov/tutorials/mpi/

#What. (Accessed on 03/17/2019).

[21] Microsoft PowerPoint - JCSP. https://www.cs.kent.ac.uk/projects/ofa/pdpta/

jcsp.pdf. (Accessed on 03/16/2019).

[22] Microsoft Word - INTERTWinE Best Practice Guide MPI+OpenMP 1.1.docx. https:
//www.intertwine-project.eu/sites/default/files/images/INTERTWinE_

Best_Practice_Guide_MPI%2BOpenMP_1.1.pdf. (Accessed on 03/28/2019).

[23] occam-pi and KRoC: blending CSP and the pi-calculus. https://www.cs.kent.ac.uk/

projects/ofa/kroc/. (Accessed on 01/17/2019).

[24] OccamPi Reference - Programming Languages and Systems Research Group Wiki. https:
//www.cs.kent.ac.uk/research/groups/plas/wiki/OccamPiReference/. (Ac-
cessed on 01/19/2019).

[25] OpenMp-examples-4.5.0.pdf. https://www.openmp.org/wp-content/uploads/

openmp-examples-4.5.0.pdf. (Accessed on 03/21/2019).

[26] The Go Programming Language. https://golang.org/. (Accessed on 03/20/2019).

[27] Threads and Swing. https://www.comp.nus.edu.sg/~cs3283/ftp/Java/

swingConnect/archive/tech_topics_arch/threads/threads.html. (Accessed
on 04/28/2019).

[28] Why has the actor model not succeeded? https://www.doc.ic.ac.uk/~nd/surprise_

97/journal/vol2/pjm2/. (Accessed on 03/20/2019).

[29] G. A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. Techni-
cal report, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLI-
GENCE LAB, 1985.

192

www.manaraa.com

[30] J. Armstrong. Erlang. Communications of the ACM, 53(9):68–75, 2010.

[31] D. Aspinall. The Microprocessor and its Application: An Advanced Course. Cambridge
University Press, dec 1978.

[32] F. R. Barnes. Guppy: Process-Oriented Programming on Embedded Devices. 2015.

[33] F. R. Barnes and P. H. Welch. Mobile Data, Dynamic Allocation and Zero Aliasing: An
occam Experiment. Communicating process architectures, 59:243–264, 2001.

[34] F. R. Barnes and P. H. Welch. Communicating Mobile Processes. Communicating process
architectures, 62:201–218, 2004.

[35] J. Bloch. Effective Java (2nd Edition). Addison-Wesley, may 2008.

[36] N. C. Brown. Communicating Haskell Processes: Composable Explicit Concurrency using
Monads. In CPA, pages 67–83, 2008.

[37] N. C. Brown and P. H. Welch. An introduction to the kent c++ csp library. Communicating
Process Architectures 2003, 61:139–156, 2003.

[38] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: a code manipulation tool to implement
adaptable systems. Adaptable and extensible component systems, 30(19), 2002.

[39] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory program-
ming. IEEE computational science and engineering, 5(1):46–55, 1998.

[40] A. Danalis, L. Pollock, M. Swany, and J. Cavazos. MPI-aware compiler optimizations for
improving communication-computation overlap. In Proceedings of the 23rd international
conference on Supercomputing, pages 316–325. ACM, 2009.

[41] J. Davies. Setting real-time CSP. Computing Laboratory, Oxford University, 1994.

[42] I. East, J. Martin, P. Welch, D. Duce, M. Green, et al. Communicating Mobile Processes.

[43] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark silicon and
the end of multicore scaling. In 2011 38th Annual international symposium on computer
architecture (ISCA), pages 365–376. IEEE, 2011.

[44] J. R. Fonseca Cacho. Engaging assignments increase performance. 2019.

[45] J. R. Fonseca Cacho and K. Taghva. Reproducible research in document analysis and recog-
nition. In Information Technology-New Generations, pages 389–395. Springer, 2018.

[46] J. R. Fonseca Cacho and K. Taghva. Aligning ground truth text with ocr degraded text,
2019. Paper Presented at Computing Conference, London, UK.

[47] J. R. Fonseca Cacho, K. Taghva, and D. Alvarez. Using the google web 1t 5-gram corpus
for ocr error correction. In Information Technology-New Generations. Springer, 2019. in
press.

193

www.manaraa.com

[48] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. P. Wong. Device
scaling limits of si mosfets and their application dependencies. Proceedings of the IEEE,
89(3):259–288, 2001.

[49] E. Gamma. Design Patterns: Elements of Reusable Object-Oriented Software. Pearson
Education India, 1995.

[50] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, nov 1994.

[51] J. Gibbons. Design Patterns as Higher-Order Datatype-Generic Programs. In Proceedings
of the 2006 ACM SIGPLAN workshop on Generic programming, pages 1–12. ACM, 2006.

[52] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java Concurrency in
Practice. Pearson Education, 2006.

[53] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message-Passing Interface (Scientific and Engineering Computation). The MIT Press, nov
2014.

[54] W. D. Gropp. Learning from the Success of MPI. In International Conference on High-
Performance Computing, pages 81–92. Springer, 2001.

[55] P. B. Hansen. Structured Multiprogramming. Communications of the ACM, 15(7):574–578,
1972.

[56] O. Hernandez, F. Song, B. Chapman, J. Dongarra, B. Mohr, S. Moore, and F. Wolf. Per-
formance Instrumentation and Compiler Optimizations for MPI/OpenMP Applications. In
International Workshop on OpenMP, pages 267–278. Springer, 2005.

[57] C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. Artificial intelli-
gence, 8(3):323–364, 1977.

[58] C. Hewitt. Actor Model of Computation: Scalable Robust Information Systems. arXiv
preprint arXiv:1008.1459, 2010.

[59] G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers. Communicating Java Threads. In
Parallel Programming and Java, Proceedings of WoTUG, volume 20, pages 48–76, 1997.

[60] G. H. Hilderink, J. F. Broenink, and A. Bakkers. Communicating Threads for Java. In Pro-
ceedings of WoTUG-22: Architectures, Languages and Techniques for Concurrent Systems,
pages 243–261, 1999.

[61] C. Hinton and C. R. Ivimey. Legacy of the transputer. emergence, 80186:19.

[62] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. In The origin of
concurrent programming, pages 272–294. Springer, 1974.

[63] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,

194

www.manaraa.com

21(8):666–677, 1978.

[64] C. A. R. Hoare, S. D. Brookes, and A. W. Roscoe. A theory of Communicating Sequential
Processes. Oxford University Computing Laboratory, Programming Research Group, 1981.

[65] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710, 1966.

[66] R. Love. Linux Kernel Development (3rd Edition). Addison-Wesley Professional, jul 2010.

[67] D. Malik. C++ Programming. Thomson, 2011.

[68] D. May. CSP, occam and Transputers. In Communicating Sequential Processes. The First
25 Years, pages 75–84. Springer, 2005.

[69] D. May and R. Taylor. Occam-an overview. Microprocessors and Microsystems, 8(2):73–
79, 1984.

[70] R. Milner. Communicating and Mobile Systems: the pi calculus. Cambridge university
press, 1999.

[71] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, i. Information and
computation, 100(1):1–40, 1992.

[72] J. Moores. Ccsp-a portable csp-based run-time system. In Architectures, languages and
techniques for concurrent systems: WoTUG-22, proceedings of the 22nd World Occam and
Transputer User Group Technical Meeting, 11-14 April 1999, Keele, United Kingdom, vol-
ume 57, page 147. IOS Press, 1999.

[73] P. Niemeyer and D. Leuck. Learning Java: A Bestselling Hands-On Java Tutorial. O’Reilly
Media, 4 edition, 2013.

[74] S. Oaks and H. Wong. Java Threads: Understanding and Mastering Concurrent Program-
ming. ” O’Reilly Media, Inc.”, 2004.

[75] G. Oprean. An implementation of active objects in java. 2007.

[76] G. Oprean and J. B. Pedersen. Asynchronous Active Objects in Java. In CPA, pages 237–
254, 2008.

[77] T. J. Parr. Enforcing Strict Model-View Separation in Template Engines. In Proceedings of
the 13th international conference on World Wide Web, pages 224–233. ACM, 2004.

[78] J. Pedersen and K. Chalmers. Verifying Channel Communication Correctness for a Multi-
Core Cooperatively Scheduled Runtime Using CSP. In Proceedings of the 2019 FormaliSE
workshop at ICSE, May 2019.

[79] J. B. Pedersen and B. Kauke. Resumable Java Bytecode-Process Mobility for the JVM. In
CPA, pages 159–172, 2009.

195

www.manaraa.com

[80] J. B. Pedersen and M. L. Smith. ProcessJ: A Possible Future of Process-Oriented Design.
Communicating Process Architectures, pages 133–156, 2013.

[81] J. B. Pedersen and M. Sowders. Static Scoping and Name Resolution for Mobile Processes
with Polymorphic Interfaces. In CPA, pages 71–85, 2011.

[82] J. B. Pedersen and A. Stefik. Towards Millions of Processes on the JVM. Communicating
Process Architectures, 71, 2014.

[83] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP Parallel Programming on
Clusters of Multi-core SMP Nodes. In 2009 17th Euromicro international conference on
parallel, distributed and network-based processing, pages 427–436. IEEE, 2009.

[84] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Bell System Technical
Journal, 57(6):1905–1929, 1978.

[85] C. G. Ritson, A. T. Sampson, and F. R. Barnes. Multicore scheduling for lightweight com-
municating processes. In International Conference on Coordination Languages and Models,
pages 163–183. Springer, 2009.

[86] C. G. Ritson, A. T. Sampson, and F. R. Barnes. Multicore scheduling for lightweight com-
municating processes. Science of Computer Programming, 77(6):727–740, 2012.

[87] C. G. Ritson and P. H. Welch. A Process-Oriented Architecture for Complex System Mod-
elling. Concurrency and Computation: Practice and Experience, 22(8):965–980, 2010.

[88] B. Roscoe. A Theory of Communicating Sequential Processes. Journal of the ACM, (3),
1984.

[89] D. Sangiorgi and D. Walker. The pi-calculus: a Theory of Mobile Processes. Cambridge
university press, 2003.

[90] N. C. Schaller, G. H. Hilderink, and P. H. Welch. Using java for parallel computing: Jcsp
versus ctj, a comparison. Communicating process architectures, 2000:205–226, 2000.

[91] R. R. Schaller. Moore’s law: past, present and future. IEEE spectrum, 34(6):52–59, 1997.

[92] H. Schildt. Java The Complete Reference, 8th Edition. McGraw-Hill Education, 8 edition,
2011.

[93] S. Schneider, A. Cavalcanti, H. Treharne, and J. Woodcock. A Layered Behavioural Model
of Platelets. In 11th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS’06), pages 9–pp. IEEE, 2006.

[94] C. Shrestha and J. B. Pedersen. JVMCSP-Approaching Billions of Processes on a Single-
Core JVM. 2016.

[95] C. D. Shrestha. The JVMCSP Runtime and Code Generator for ProcessJ in Java. 2016.

196

www.manaraa.com

[96] L. Smith. Mixed mode mpi/openmp programming. UK High-End Computing Technology
Report, pages 1–25, 2000.

[97] L. Smith and M. Bull. Development of mixed mode MPI/OpenMP applications. Scientific
Programming, 9(2-3):83–98, 2001.

[98] M. Sowders. ProcessJ: A Process-Oriented Programming Language. 2011.

[99] M. Sowders and J. B. Pedersen. Mobile Process Resumption in Java Without Bytecode
Rewriting. In Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), page 1. The Steering Committee of The
World Congress in Computer Science, Computer , 2011.

[100] S. Stepney, F. A. Polack, and H. R. Turner. Engineering Emergence. In 11th IEEE Inter-
national Conference on Engineering of Complex Computer Systems (ICECCS’06), pages
9–pp. IEEE, 2006.

[101] R. Thakur and W. Gropp. Open issues in MPI implementation. In Asia-Pacific Conference
on Advances in Computer Systems Architecture, pages 327–338. Springer, 2007.

[102] B. Vinter, J. M. Bjørndalen, and R. M. Friborg. PyCSP Revisited. In Cpa, pages 263–276,
2009.

[103] P. H. Welch. Java Threads in the Light of occam/CSP. In Architectures, Languages and
Patterns for Parallel and Distributed Applications, Proceedings of WoTUG, volume 21,
pages 259–284, 1998.

[104] P. H. Welch. Process Oriented Design for Java: Concurrency for All. Lecture Notes in
Computer Science, pages 687–687, 2002.

[105] P. H. Welch. Life of occam-pi. Communicating Process Architectures 2013, pages 293–318,
2013.

[106] P. H. Welch and F. R. Barnes. Communicating Mobile Processes. In Communicating Se-
quential Processes. The First 25 Years, pages 175–210. Springer, 2005.

[107] P. H. Welch, N. C. Brown, J. Moores, K. Chalmers, and B. H. Sputh. Integrating and
extending JCSP. 2007.

[108] P. H. Welch, K. Wallnau, A. T. Sampson, and M. Klein. To boldly go: an occam-π mission
to engineer emergence. Natural Computing, 11(3):449–474, 2012.

[109] J. Wexler. Concurrent programming in OCCAM 2. Ellis Horwood New York, 1989.

197

www.manaraa.com

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Benjamin Cisneros Merino

Email: benjcisneros@gmail.com

Degrees:

Bachelor of Science in Computer Science 2017

University of Nevada Las Vegas

Thesis Title: ProcessJ: The JVMCSP Code Generator

Thesis Examination Committee:

Chairperson, Dr. Jan Bækgaard Pedersen, Ph.D.

Committee Member, Dr. Kazem Taghva, Ph.D.

Committee Member, Dr. Laxmi Gewali, Ph.D.

Graduate Faculty Representative, Dr. Emma E. Regentova, Ph.D.

198

	ProcessJ: The JVMCSP Code Generator
	Repository Citation

	tmp.1577206807.pdf.9aX1A

